Django基础五之django模型层(一)单表操作

ORM简介

  • MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的工作量,不需要面对因数据库变更而导致的无效劳动
  • ORM是“对象-关系-映射”的简称。(Object Relational Mapping,简称ORM)(将来会学一个sqlalchemy,是和他很像的,但是django的orm没有独立出来让别人去使用,虽然功能比sqlalchemy更强大,但是别人用不了)
  • 类对象--->sql--->pymysql--->mysql服务端--->磁盘,orm其实就是将类对象的语法翻译成sql语句的一个引擎,明白orm是什么了,剩下的就是怎么使用orm,怎么来写类对象关系语句。

原生sql和python的orm代码对比

#sql中的表                                                      

 #创建表:
     CREATE TABLE employee(                                     
                id INT PRIMARY KEY auto_increment ,                    
                name VARCHAR (20),                                      
                gender BIT default 1,                                  
                birthday DATA ,                                         
                department VARCHAR (20),                                
                salary DECIMAL (8,2) unsigned,                          
              );


  #sql中的表纪录                                                  

  #添加一条表纪录:                                                          
      INSERT employee (name,gender,birthday,salary,department)            
             VALUES   ("alex",1,"1985-12-12",8000,"保洁部");               

  #查询一条表纪录:                                                           
      SELECT * FROM employee WHERE age=24;                               

  #更新一条表纪录:                                                           
      UPDATE employee SET birthday="1989-10-24" WHERE id=1;              

  #删除一条表纪录:                                                          
      DELETE FROM employee WHERE name="alex"                             





#python的类
class Employee(models.Model):
     id=models.AutoField(primary_key=True)
     name=models.CharField(max_length=32)
     gender=models.BooleanField()
     birthday=models.DateField()
     department=models.CharField(max_length=32)
     salary=models.DecimalField(max_digits=8,decimal_places=2)


 #python的类对象
      #添加一条表纪录:
          emp=Employee(name="alex",gender=True,birthday="1985-12-12",epartment="保洁部")
          emp.save()
      #查询一条表纪录:
          Employee.objects.filter(age=24)
      #更新一条表纪录:
          Employee.objects.filter(id=1).update(birthday="1989-10-24")
      #删除一条表纪录:
          Employee.objects.filter(name="alex").delete()

单表操作

创建表

创建模型

创建名为book的app,在book下的models.py中创建模型:

from django.db import models

# Create your models here.


class Book(models.Model):
     id=models.AutoField(primary_key=True) #如果表里面没有写主键,表里面会自动生成一个自增主键字段,叫做id字段,orm要求每个表里面必须要写一个主键
     title=models.CharField(max_length=32)  #和varchar(32)是一样的,32个字符
     state=models.BooleanField()
     pub_date=models.DateField() #必须存这种格式"2018-12-12"
     price=models.DecimalField(max_digits=8,decimal_places=2) #max_digits最大位数,decimal_places小数部分占多少位
     publish=models.CharField(max_length=32)

接下来要创建对应的数据,连接上对应的数据库,然后执行创建表的命令,翻译成相应的sql,然后到数据库里面执行,从而创建对应的表。多了一步orm翻译成sql的过程,效率低了,但是没有太大的损伤,还能忍受,当你不能忍的时候,你可以自己写原生sql语句,一般的场景orm都够用了,开发起来速度更快,写法更贴近应用程序开发,还有一点就是数据库升级或者变更,那么你之前用sql语句写的数据库操作,那么就需要将sql语句全部修改,但是如果你用orm,就不需要担心这个问题,不管是你从mysql变更到oracle还是从oracle更换到mysql,你如果用的是orm来搞的,你只需要修改一下orm的引擎(配置文件里面改一些配置就搞定)就可以了,你之前写的那些orm语句还是会自动翻译成对应数据库的sql语句。

更多字段和参数

每个字段有一些特有的参数,例如,CharField需要max_length参数来指定VARCHAR数据库字段的大小。还有一些适用于所有字段的通用参数。 这些参数在文档中有详细定义,这里我们只简单介绍一些最常用的:

1、models.AutoField  自增列 = int(11)
  如果没有的话,默认会生成一个名称为 id 的列,如果要显示的自定义一个自增列,必须将给列设置为主键 primary_key=True。
2、models.CharField  字符串字段
  必须 max_length 参数
3、models.BooleanField  布尔类型=tinyint(1)
  不能为空,Blank=True
4、models.ComaSeparatedIntegerField  用逗号分割的数字=varchar
  继承CharField,所以必须 max_lenght 参数
5、models.DateField  日期类型 date
  对于参数,auto_now = True 则每次更新都会更新这个时间;auto_now_add 则只是第一次创建添加,之后的更新不再改变。
6、models.DateTimeField  日期类型 datetime
  同DateField的参数
7、models.Decimal  十进制小数类型 = decimal
  必须指定整数位max_digits和小数位decimal_places
8、models.EmailField  字符串类型(正则表达式邮箱) =varchar
  对字符串进行正则表达式
9、models.FloatField  浮点类型 = double
10、models.IntegerField  整形
11、models.BigIntegerField  长整形
  integer_field_ranges = {
    'SmallIntegerField': (-32768, 32767),
    'IntegerField': (-2147483648, 2147483647),
    'BigIntegerField': (-9223372036854775808, 9223372036854775807),
    'PositiveSmallIntegerField': (0, 32767),
    'PositiveIntegerField': (0, 2147483647),
  }
12、!models.IPAddressField  字符串类型(ip4正则表达式)不再使用
13、models.GenericIPAddressField  字符串类型(ip4和ip6是可选的)
  参数protocol可以是:both、ipv4、ipv6
  验证时,会根据设置报错
14、models.NullBooleanField  允许为空的布尔类型
15、models.PositiveIntegerFiel  正Integer
16、models.PositiveSmallIntegerField  正smallInteger
17、models.SlugField  减号、下划线、字母、数字
18、models.SmallIntegerField  数字
  数据库中的字段有:tinyint、smallint、int、bigint
19、models.TextField  字符串=longtext
20、models.TimeField  时间 HH:MM[:ss[.uuuuuu]]
21、models.URLField  字符串,地址正则表达式
22、models.BinaryField  二进制
23、models.ImageField   图片
24、models.FilePathField 文件

更多参数

(1)null
 
如果为True,Django 将用NULL 来在数据库中存储空值。 默认值是 False.
 
(1)blank
 
如果为True,该字段允许不填。默认为False。
要注意,这与 null 不同。null纯粹是数据库范畴的,而 blank 是数据验证范畴的。
如果一个字段的blank=True,表单的验证将允许该字段是空值。如果字段的blank=False,该字段就是必填的。
 
(2)default
 
字段的默认值。可以是一个值或者可调用对象。如果可调用 ,每有新对象被创建它都会被调用,如果你的字段没有设置可以为空,那么将来如果我们后添加一个字段,这个字段就要给一个default值
 
(3)primary_key
 
如果为True,那么这个字段就是模型的主键。如果你没有指定任何一个字段的primary_key=True,
Django 就会自动添加一个IntegerField字段做为主键,所以除非你想覆盖默认的主键行为,
否则没必要设置任何一个字段的primary_key=True。
 
(4)unique
 
如果该值设置为 True, 这个数据字段的值在整张表中必须是唯一的
 
(5)choices
由二元组组成的一个可迭代对象(例如,列表或元组),用来给字段提供选择项。 如果设置了choices ,默认的表单将是一个选择框而不是标准的文本框,<br>而且这个选择框的选项就是choices 中的选项。
(6)db_index
  如果db_index=True 则代表着为此字段设置数据库索引。

DatetimeField、DateField、TimeField这个三个时间字段,都可以设置如下属性。

(7)auto_now_add
    配置auto_now_add=True,创建数据记录的时候会把当前时间添加到数据库。

(8)auto_now
    配置上auto_now=True,每次更新数据记录的时候会更新该字段,标识这条记录最后一次的修改时间。

关于auto_now,你需要知道的事情

当需要更新时间的时候,我们尽量通过datetime模块来创建当前时间,并保存或者更新到数据库里面,看下面的分析:
假如我们的表结构是这样的

class User(models.Model):
    username = models.CharField(max_length=255, unique=True, verbose_name='用户名')
    is_active = models.BooleanField(default=False, verbose_name='激活状态')

那么我们修改用户名和状态可以使用如下两种方法:

方法一:

User.objects.filter(id=1).update(username='nick',is_active=True)

方法二:

_t = User.objects.get(id=1)
_t.username='nick'
_t.is_active=True
_t.save()

方法一适合更新一批数据,类似于mysql语句update user set username='nick' where id = 1

方法二适合更新一条数据,也只能更新一条数据,当只有一条数据更新时推荐使用此方法,另外此方法还有一个好处,我们接着往下看

具有auto_now属性字段的更新
我们通常会给表添加三个默认字段 
- 自增ID,这个django已经默认加了,就像上边的建表语句,虽然只写了username和is_active两个字段,但表建好后也会有一个默认的自增id字段 
- 创建时间,用来标识这条记录的创建时间,具有auto_now_add属性,创建记录时会自动填充当前时间到此字段 
- 修改时间,用来标识这条记录最后一次的修改时间,具有auto_now属性,当记录发生变化时填充当前时间到此字段

就像下边这样的表结构

class User(models.Model):
    create_time = models.DateTimeField(auto_now_add=True, verbose_name='创建时间')
    update_time = models.DateTimeField(auto_now=True, verbose_name='更新时间')
    username = models.CharField(max_length=255, unique=True, verbose_name='用户名')
    is_active = models.BooleanField(default=False, verbose_name='激活状态')

当表有字段具有auto_now属性且你希望他能自动更新时,必须使用上边方法二的更新,不然auto_now字段不会更新,也就是:

_t = User.objects.get(id=1)
_t.username='nick'
_t.is_active=True
_t.save()

json/dict类型数据更新字段
目前主流的web开放方式都讲究前后端分离,分离之后前后端交互的数据格式大都用通用的jason型,那么如何用最少的代码方便的更新json格式数据到数据库呢?同样可以使用如下两种方法:

方法一:

data = {'username':'nick','is_active':'0'}
User.objects.filter(id=1).update(**data)

同样这种方法不能自动更新具有auto_now属性字段的值
通常我们再变量前加一个星号(*)表示这个变量是元组/列表,加两个星号表示这个参数是字典
方法二:

data = {'username':'nick','is_active':'0'}
_t = User.objects.get(id=1)
_t.__dict__.update(**data)
_t.save()

方法二和方法一同样无法自动更新auto_now字段的值
注意这里使用到了一个__dict__方法
方法三:

_t = User.objects.get(id=1)
_t.role=Role.objects.get(id=3)
_t.save()

#想让auto_now更新数据时自动更新时间,必须使用save方法来更新数据,所以很不方便,所以这个创建时自动添加时间或者更新时间的auto_now方法我们最好就别用了,比较恶心,并且支持我们自己来给这个字段更新时间:
models.py:
class Book(models.Model):
    name = models.CharField(max_length=32)
    date1 = models.DateTimeField(auto_now=True,null=True)
    date2 = models.DateTimeField(auto_now_add=True,null=True)

views.py:
        import datetime
        models.Book.objects.filter(id=1).update(
            name='chao',
            date1=datetime.datetime.now(),
            date2=datetime.datetime.now(),
        )
关于auto_now和auto_now_add

settings配置mysql数据库

若想将模型转为mysql数据库中的表,需要在settings中配置:

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME':'bms',           # 要连接的数据库,连接前需要创建好
        'USER':'root',        # 连接数据库的用户名
        'PASSWORD':'',        # 连接数据库的密码
        'HOST':'127.0.0.1',       # 连接主机,默认本级
        'PORT':3306            #  端口 默认3306
    }
}
DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME':'bms',           # 要连接的数据库,连接前需要创建好
        'USER':'root',        # 连接数据库的用户名
        'PASSWORD':'',        # 连接数据库的密码
        'HOST':'127.0.0.1',       # 连接主机,默认本级
        'PORT':3306            #  端口 默认3306
    },
    'app01': { #可以为每个app都配置自己的数据,并且数据库还可以指定别的,也就是不一定就是mysql,也可以指定sqlite等其他的数据库
        'ENGINE': 'django.db.backends.mysql',
        'NAME':'bms',           # 要连接的数据库,连接前需要创建好
        'USER':'root',        # 连接数据库的用户名
        'PASSWORD':'',        # 连接数据库的密码
        'HOST':'127.0.0.1',       # 连接主机,默认本级
        'PORT':3306            #  端口 默认3306
    }
}
app配置单独的数据库

注意1:NAME即数据库的名字,在mysql连接前该数据库必须已经创建,而上面的sqlite数据库下的db.sqlite3则是项目自动创建 USER和PASSWORD分别是数据库的用户名和密码。设置完后,再启动我们的Django项目前,我们需要激活我们的mysql。然后,启动项目,会报错:no module named MySQLdb 。这是因为django默认你导入的驱动是MySQLdb,可是MySQLdb 对于py3有很大问题,所以我们需要的驱动是PyMySQL 所以,我们只需要找到项目名文件下的__init__,在里面写入:

import pymysql
pymysql.install_as_MySQLdb()

最后通过两条数据库迁移命令即可在指定的数据库中创建表 :

python manage.py makemigrations  #生成记录,每次修改了models里面的内容或者添加了新的app,新的app里面写了models里面的内容,都要执行这两条
python manage.py migrate         #执行上面这个语句的记录来创建表,生成的表名字前面会自带应用的名字,例如:你的book表在mysql里面叫做app01_book表

关于同步指令的执行简单原理:

在执行 python manager.py magrations 时django 会在相应的 app 的migration文件夹下面生成 一个python脚本文件
在执行 python manager.py migrte 时 django才会生成数据库表,那么django是如何生成数据库表的呢,
django是根据 migration下面的脚本文件来生成数据表的
每个migration文件夹下面有多个脚本,那么django是如何知道该执行那个文件的呢,django有一张django-migrations表,表中记录了已经执行的脚本,那么表中没有的就是还没执行的脚本,则 执行migrate的时候就只执行表中没有记录的那些脚本。
有时在执行 migrate 的时候如果发现没有生成相应的表,可以看看在 django-migrations表中看看 脚本是否已经执行了,
可以删除 django-migrations 表中的记录 和 数据库中相应的 表 , 然后重新 执行

注意2:确保配置文件中的INSTALLED_APPS中写入我们创建的app名称

INSTALLED_APPS = [
    'django.contrib.admin',  #这是django给你提供的一些特殊功能的配置(应用,只是咱们看不到),也在应用这里给配置的,这些功能如果你注销了,那么我们执行同步数据库指令之后,就不会生成那些django自带的表了。因为执行数据库同步语句的时候,django会找这里面所有的应用,找到他们的models来创建表
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    "book"  #直接写app的名字也行,写'app01.apps.App01Config'也行
]

注意3:如果报错如下:

django.core.exceptions.ImproperlyConfigured: mysqlclient 1.3.3 or newer is required; you have 0.7.11.None

MySQLclient目前只支持到python3.4,因此如果使用的更高版本的python,需要修改如下:

通过查找路径C:\Programs\Python\Python36-32\Lib\site-packages\Django-2.0-py3.6.egg\django\db\backends\mysql
这个路径里的文件把

if version < (1, 3, 3):
     raise ImproperlyConfigured("mysqlclient 1.3.3 or newer is required; you have %s" % Database.__version__)

注释掉 就OK了。

注意4: 如果想打印orm转换过程中的sql,需要在settings中进行如下配置:(学了增加记录的语句在过来配置吧)

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'handlers': {
        'console':{
            'level':'DEBUG',
            'class':'logging.StreamHandler',
        },
    },
    'loggers': {
        'django.db.backends': {
            'handlers': ['console'],
            'propagate': True,
            'level':'DEBUG',
        },
    }
}

还有一种查看sql语句的方式

from app01 import models

def add_book(request):
    '''
    添加表记录
    :param request: http请求信息
    :return:
    '''
    book_obj = models.Book(title='python',price=123,pub_date='2012-12-12',publish='人民出版社')
    book_obj.save()
    from django.db import connection  #通过这种方式也能查看执行的sql语句
    print(connection.queries)
    return HttpResponse('ok')

自定义字段(了解)

class UnsignedIntegerField(models.IntegerField):
    def db_type(self, connection):
        return 'integer UNSIGNED'

自定义char类型字段:

class FixedCharField(models.Field):
    """
    自定义的char类型的字段类
    """
    def __init__(self, max_length, *args, **kwargs):
        super().__init__(max_length=max_length, *args, **kwargs)
        self.length = max_length

    def db_type(self, connection):
        """
        限定生成数据库表的字段类型为char,长度为length指定的值
        """
        return 'char(%s)' % self.length


class Class(models.Model):
    id = models.AutoField(primary_key=True)
    title = models.CharField(max_length=25)
    # 使用上面自定义的char类型的字段
    cname = FixedCharField(max_length=25)

创建的表结构:

附ORM字段与数据库实际字段的对应关系:

'AutoField': 'integer AUTO_INCREMENT',
    'BigAutoField': 'bigint AUTO_INCREMENT',
    'BinaryField': 'longblob',
    'BooleanField': 'bool',
    'CharField': 'varchar(%(max_length)s)',
    'CommaSeparatedIntegerField': 'varchar(%(max_length)s)',
    'DateField': 'date',
    'DateTimeField': 'datetime',
    'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)',
    'DurationField': 'bigint',
    'FileField': 'varchar(%(max_length)s)',
    'FilePathField': 'varchar(%(max_length)s)',
    'FloatField': 'double precision',
    'IntegerField': 'integer',
    'BigIntegerField': 'bigint',
    'IPAddressField': 'char(15)',
    'GenericIPAddressField': 'char(39)',
    'NullBooleanField': 'bool',
    'OneToOneField': 'integer',
    'PositiveIntegerField': 'integer UNSIGNED',
    'PositiveSmallIntegerField': 'smallint UNSIGNED',
    'SlugField': 'varchar(%(max_length)s)',
    'SmallIntegerField': 'smallint',
    'TextField': 'longtext',
    'TimeField': 'time',
    'UUIDField': 'char(32)',

添加表纪录

在python中orm的对应关系有三种:

类        ---------->表

类对象 ---------->行(记录)

类属性 ---------->表的字段(重点)

首先想操作表的增删改查,你需要导入这个表 

#在逻辑代码中导入你要操作的表
from app01 import models

def add_book(request):
    '''
    添加表记录
    :param request: http请求信息
    :return:
    '''
    models.Book(title='python',price=123,pub_date='2012-12-12',publish='人民出版社') #pub_date=datetime.datetime.now(),这个字段直接给日期时间类型的数据也是可以的

方式1

book_obj=Book(title="python葵花宝典",state=True,price=100,publish="苹果出版社",pub_date="2012-12-12") #实例化一个对象表示一行记录,时间日期如果只写日期的话,时间默认是00.00.00,注意日期写法必须是2012-12-12这种格式
book_obj.save() #就是pymysql的那个commit提交

方式2(用的多)

# create方法的返回值book_obj就是插入book表中的python葵花宝典这本书籍纪录对象
  book_obj=Book.objects.create(title="python葵花宝典",state=True,price=100,publish="苹果出版社",pub_date="2012-12-12")  #这个返回值就像是mysql里面咱们讲的那个new对象,还记得吗,他跟上面那种创建方式创建的那个对象是一样的  #这个Book.objects就像是一个Book表的管理器一样,提供了增删改查所有的方法  print(book_obj.title) #可以基于这个对象来取这个新添加的记录对象的属性值  dic1 = {'title':'linux','state'=True,'price':100,'publish'='2018-12-12'}  #这样写的时候,注意如果你用post提交过来的请求,有个csrf_token的键值对要删除,并且request.POST是不能直接在request.POST里面进行修改和删除的,data = request.POST.dict()转换成普通的字典-->Book.objects.create(**data)  book.objects.create(**dic1)

方式3:批量插入

book_list = []
    for i in range(10):
        bk_obj = models.Book(
            name='chao%s'%i,
            addr='北京%s'%i
        )
        book_list.append(bk_obj)

    models.Book.objects.bulk_create(book_list) #批量插入,速度快

update_or_create:有就更新,没有就创建 ,还有个get_or_create,有就查询出来,没有就创建

obj,created = models.UserToken.objects.update_or_create(
    user=user, # 查找筛选条件
    defaults={ # 添加或者更新的数据
      "token":random_str,
    }
    )   

查询表纪录

还记得表类.objects像是一个管理器,提供了增删改查的方法,Book.objects.all()获取所有的书籍,查询这里大家就掌握谁调用的下面的方法

查询API(都是重点)

<1> all():                  查询所有结果,结果是queryset类型
  
<2> filter(**kwargs):       它包含了与所给筛选条件相匹配的对象,结果也是queryset类型 Book.objects.filter(title='linux',price=100) #里面的多个条件用逗号分开,并且这几个条件必须都成立,是and的关系,or关系的我们后面再学,直接在这里写是搞不定or的
  
<3> get(**kwargs):          返回与所给筛选条件相匹配的对象,不是queryset类型,是行记录对象,返回结果有且只有一个,
                            如果符合筛选条件的对象超过一个或者没有都会抛出错误。捕获异常try。  Book.objects.get(id=1)
  
<4> exclude(**kwargs):      排除的意思,它包含了与所给筛选条件不匹配的对象,没有不等于的操作昂,用这个exclude,返回值是queryset类型 Book.objects.exclude(id=6),返回id不等于6的所有的对象,或者在queryset基础上调用,Book.objects.all().exclude(id=6)
                 
<5> order_by(*field):       queryset类型的数据来调用,对查询结果排序,默认是按照id来升序排列的,返回值还是queryset类型
                  models.Book.objects.all().order_by('price','id') #直接写price,默认是按照price升序排列,按照字段降序排列,就写个负号就行了order_by('-price'),order_by('price','id')是多条件排序,按照price进行升序,price相同的数据,按照id进行升序
        
<6> reverse():              queryset类型的数据来调用,对查询结果反向排序,返回值还是queryset类型
  
<7> count():                queryset类型的数据来调用,返回数据库中匹配查询(QuerySet)的对象数量。
  
<8> first():                queryset类型的数据来调用,返回第一条记录 Book.objects.all()[0] = Book.objects.all().first(),得到的都是model对象,不是queryset
  
<9> last():                queryset类型的数据来调用,返回最后一条记录
  
<10> exists():              queryset类型的数据来调用,如果QuerySet包含数据,就返回True,否则返回False
                   空的queryset类型数据也有布尔值True和False,但是一般不用它来判断数据库里面是不是有数据,如果有大量的数据,你用它来判断,那么就需要查询出所有的数据,效率太差了,用count或者exits
                 例:all_books = models.Book.objects.all().exists() #翻译成的sql是SELECT (1) AS `a` FROM `app01_book` LIMIT 1,就是通过limit 1,取一条来看看是不是有数据

<11> values(*field):        用的比较多,queryset类型的数据来调用,返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列
                            model的实例化对象,而是一个可迭代的字典序列,只要是返回的queryset类型,就可以继续链式调用queryset类型的其他的查找方法,其他方法也是一样的。
<12> values_list(*field):   它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列
 
<13> distinct():            values和values_list得到的queryset类型的数据来调用,从返回结果中剔除重复纪录

queryset方法大全:

##################################################################
# PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET #
##################################################################

def all(self)
    # 获取所有的数据对象

def filter(self, *args, **kwargs)
    # 条件查询
    # 条件可以是:参数,字典,Q

def exclude(self, *args, **kwargs)
    # 条件查询
    # 条件可以是:参数,字典,Q

def select_related(self, *fields)
    性能相关:表之间进行join连表操作,一次性获取关联的数据。

    总结:
    1. select_related主要针一对一和多对一关系进行优化。
    2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。

def prefetch_related(self, *lookups)
    性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。

    总结:
    1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
    2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。

def annotate(self, *args, **kwargs)
    # 用于实现聚合group by查询

    from django.db.models import Count, Avg, Max, Min, Sum

    v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
    # SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id

    v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
    # SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1

    v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
    # SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1

def distinct(self, *field_names)
    # 用于distinct去重
    models.UserInfo.objects.values('nid').distinct()
    # select distinct nid from userinfo

    注:只有在PostgreSQL中才能使用distinct进行去重

def order_by(self, *field_names)
    # 用于排序
    models.UserInfo.objects.all().order_by('-id','age')

def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
    # 构造额外的查询条件或者映射,如:子查询

    Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
    Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
    Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
    Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

 def reverse(self):
    # 倒序
    models.UserInfo.objects.all().order_by('-nid').reverse()
    # 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序


 def defer(self, *fields):
    models.UserInfo.objects.defer('username','id')
    或
    models.UserInfo.objects.filter(...).defer('username','id')
    #映射中排除某列数据

 def only(self, *fields):
    #仅取某个表中的数据
     models.UserInfo.objects.only('username','id')
     或
     models.UserInfo.objects.filter(...).only('username','id')

 def using(self, alias):
     指定使用的数据库,参数为别名(setting中的设置)


##################################################
# PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS #
##################################################

def raw(self, raw_query, params=None, translations=None, using=None):
    # 执行原生SQL
    models.UserInfo.objects.raw('select * from userinfo')

    # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名
    models.UserInfo.objects.raw('select id as nid from 其他表')

    # 为原生SQL设置参数
    models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,])

    # 将获取的到列名转换为指定列名
    name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'}
    Person.objects.raw('SELECT * FROM some_other_table', translations=name_map)

    # 指定数据库
    models.UserInfo.objects.raw('select * from userinfo', using="default")

    ################### 原生SQL ###################
    from django.db import connection, connections
    cursor = connection.cursor()  # cursor = connections['default'].cursor()
    cursor.execute("""SELECT * from auth_user where id = %s""", [1])
    row = cursor.fetchone() # fetchall()/fetchmany(..)


def values(self, *fields):
    # 获取每行数据为字典格式

def values_list(self, *fields, **kwargs):
    # 获取每行数据为元祖

def dates(self, field_name, kind, order='ASC'):
    # 根据时间进行某一部分进行去重查找并截取指定内容
    # kind只能是:"year"(年), "month"(年-月), "day"(年-月-日)
    # order只能是:"ASC"  "DESC"
    # 并获取转换后的时间
        - year : 年-01-01
        - month: 年-月-01
        - day  : 年-月-日

    models.DatePlus.objects.dates('ctime','day','DESC')

def datetimes(self, field_name, kind, order='ASC', tzinfo=None):
    # 根据时间进行某一部分进行去重查找并截取指定内容,将时间转换为指定时区时间
    # kind只能是 "year", "month", "day", "hour", "minute", "second"
    # order只能是:"ASC"  "DESC"
    # tzinfo时区对象
    models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.UTC)
    models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.timezone('Asia/Shanghai'))

    """
    pip3 install pytz
    import pytz
    pytz.all_timezones
    pytz.timezone(‘Asia/Shanghai’)
    """

def none(self):
    # 空QuerySet对象


####################################
# METHODS THAT DO DATABASE QUERIES #
####################################

def aggregate(self, *args, **kwargs):
   # 聚合函数,获取字典类型聚合结果
   from django.db.models import Count, Avg, Max, Min, Sum
   result = models.UserInfo.objects.aggregate(k=Count('u_id', distinct=True), n=Count('nid'))
   ===> {'k': 3, 'n': 4}

def count(self):
   # 获取个数

def get(self, *args, **kwargs):
   # 获取单个对象

def create(self, **kwargs):
   # 创建对象

def bulk_create(self, objs, batch_size=None):
    # 批量插入
    # batch_size表示一次插入的个数
    objs = [
        models.DDD(name='r11'),
        models.DDD(name='r22')
    ]
    models.DDD.objects.bulk_create(objs, 10)

def get_or_create(self, defaults=None, **kwargs):
    # 如果存在,则获取,否则,创建
    # defaults 指定创建时,其他字段的值
    obj, created = models.UserInfo.objects.get_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 2})

def update_or_create(self, defaults=None, **kwargs):
    # 如果存在,则更新,否则,创建
    # defaults 指定创建时或更新时的其他字段
    obj, created = models.UserInfo.objects.update_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 1})

def first(self):
   # 获取第一个

def last(self):
   # 获取最后一个

def in_bulk(self, id_list=None):
   # 根据主键ID进行查找
   id_list = [11,21,31]
   models.DDD.objects.in_bulk(id_list)

def delete(self):
   # 删除

def update(self, **kwargs):
    # 更新

def exists(self):
   # 是否有结果
方法

关于values的用法和返回结果举例:

all_books = models.Book.objects.all().values('id','title')
    print(all_books) #<QuerySet [{'title': 'linux', 'id': 6}, {'title': '你好', 'id': 7}, {'title': 'linux', 'id': 8}, {'title': 'xxx', 'id': 9}, {'title': 'gogogo', 'id': 10}]>
    '''
        values做的事情:
        ret = [] #queryset类型
        for obj in Book.objects.all():
            temp = {  #元素是字典类型
                'id':obj.id,
                'title':obj.title
            }
            ret.append(temp)

    '''

关于values_list的用法和返回结果举例:

all_books = models.Book.objects.all().values_list('id','title')
    print(all_books) #<QuerySet [(6, 'linux'), (7, '你好'), (8, 'linux'), (9, 'xxx'), (10, 'gogogo')]>
    '''
        values做的事情:
        ret = [] #queryset类型
        for obj in Book.objects.all():
            temp = (  #元素是元祖类型
                obj.id,obj.title
            )
            ret.append(temp)

    '''

关于distinct的用法和返回结果举例:

# all_books = models.Book.objects.all().distinct() #这样写是表示记录中所有的字段重复才叫重复,但是我们知道有主键的存在,所以不可能所有字段数据都重复
# all_books = models.Book.objects.all().distinct('price') #报错,不能在distinct里面加字段名称
# all_books = models.Book.objects.all().values('price').distinct()#<QuerySet [(Decimal('11.00'),), (Decimal('111.00'),), (Decimal('120.00'),), (Decimal('11111.00'),)]>
all_books = models.Book.objects.all().values_list('price').distinct()#<QuerySet [{'price': Decimal('11.00')}, {'price': Decimal('111.00')}, {'price': Decimal('120.00')}, {'price': Decimal('11111.00')}]> 只能用于valuse和values_list进行去重
all_books = models.Book.objects.all().values_list('title','price').distinct() #title和price两个同时重复才算一条重复的记录

打印一个对象,让他显示一个能够看懂的值,__str__,models.py的数据表类里面定义一个__str__方法就可以了

#__str__方法的使用
class MyClass:
    def __init__(self,name,age):
        self.name = name
        self.age = age
    def __str__(self):
        return self.name + '>>>' + str(self.age)

a = MyClass('chao',18)
b = MyClass('wc',20)
print(a)
print(b)

models.py的__str__的写法:

from django.db import models

# Create your models here.

class Book(models.Model):
    id = models.AutoField(primary_key=True)
    title = models.CharField(max_length=32)
    price = models.DecimalField(max_digits=8,decimal_places=2,)
    pub_date = models.DateTimeField() #必须存这种格式"2012-12-12"
    publish = models.CharField(max_length=32)
    def __str__(self): #后添加这个str方法,也不需要重新执行同步数据库的指令
        return self.title #当我们打印这个类的对象的时候,显示title值

基于双下划线的模糊查询

Book.objects.filter(price__in=[100,200,300]) #price值等于这三个里面的任意一个的对象
Book.objects.filter(price__gt=100)  #大于,大于等于是price__gte=100,别写price>100,这种参数不支持
Book.objects.filter(price__lt=100)
Book.objects.filter(price__range=[100,200])  #sql的between and,大于等于100,小于等于200
Book.objects.filter(title__contains="python")  #title值中包含python的
Book.objects.filter(title__icontains="python") #不区分大小写
Book.objects.filter(title__startswith="py") #以什么开头,istartswith  不区分大小写
Book.objects.filter(pub_date__year=2012)

日期查询示例:

# all_books = models.Book.objects.filter(pub_date__year=2012) #找2012年的所有书籍
# all_books = models.Book.objects.filter(pub_date__year__gt=2012)#找大于2012年的所有书籍
all_books = models.Book.objects.filter(pub_date__year=2019,pub_date__month=2)#找2019年月份的所有书籍,如果明明有结果,你却查不出结果,是因为mysql数据库的时区和咱们django的时区不同导致的,了解一下就行了,你需要做的就是将django中的settings配置文件里面的USE_TZ = True改为False,就可以查到结果了,以后这个值就改为False,而且就是因为咱们用的mysql数据库才会有这个问题,其他数据库没有这个问题。

删除表纪录

delete()方法的调用者可以是一个model对象,也可以是一个queryset集合。

删除方法就是 delete()。它运行时立即删除对象而不返回任何值。例如:

model_obj.delete()

你也可以一次性删除多个对象。每个 QuerySet 都有一个 delete() 方法,它一次性删除 QuerySet 中所有的对象。

例如,下面的代码将删除 pub_date 是2005年的 Entry 对象:

Entry.objects.filter(pub_date__year=2005).delete()

等学到外键的时候再说,在 Django 删除对象时,会模仿 SQL 约束 ON DELETE CASCADE 的行为,换句话说,删除一个对象时也会删除与它相关联的外键对象。例如:

b = Blog.objects.get(pk=1)
# This will delete the Blog and all of its Entry objects.
b.delete()

要注意的是: delete() 方法是 QuerySet 上的方法,但并不适用于 Manager 本身。这是一种保护机制,是为了避免意外地调用 Entry.objects.delete() 方法导致 所有的 记录被误删除。如果你确认要删除所有的对象,那么你必须显式地调用:

Entry.objects.all().delete() 

如果不想级联删除,可以设置为:

pubHouse = models.ForeignKey(to='Publisher', on_delete=models.SET_NULL, blank=True, null=True)

修改表纪录

#方式1
Book.objects.filter(title__startswith="py").update(price=120), update只能是querset类型才能调用,model对象不能直接调用更新方法,所以使用get方法获取对象的时候是不能update的。
#方式2
book_obj = Book.objects.filter(title__startswith="py")
book_obj.price=100
book_obj.save() 这也是修改记录的一种方式,但是这种方式会将所有字段的数据都重新的赋值一遍(不是是不是需要更新的字段值),效率偏低,但是也是一种方式

此外,update()方法对于任何结果集(QuerySet)均有效,这意味着你可以同时更新多条记录update()方法会返回一个整型数值,表示受影响的记录条数。

注意:<input type="date" class="form-control" id="book_pub_date" placeholder="出版日期" name="book_pub_date" value="{{ edit_obj.pub_date|date:'Y-m-d' }}">,type='date'的input标签,value的值必须是'Y-m-d'的格式,这个标签才能认识并被赋值,所以,要通过date过滤给它改变格式。

 

posted @ 2021-01-05 21:12  he。  阅读(72)  评论(0编辑  收藏  举报