BloomFilter和Bitmap算法

 一、Bloom Filter的算法:

  为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1

处理字符串的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

 

检查字符串是否存在的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive(假正率) 。

删除字符串的过程:

  字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体.它将标准Bloom Filter位数组的每一位扩展为一个小的计数器(Counter),在插入元素时给对应的kk为哈希函数个数)个Counter的值分别加1,删除元素时给对应的kCounter的值分别减1

二、Bit-map

  所谓Bit-map就是用于一个bit来标记某个元素对应的value,而key即是该元素,由于采用bit为单位来存储数据,因此在存储空间方面可以大大节省。

  1、假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,如下图:

                                                                                       

 

  2、然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1,注意下标是从0开始的

  

 

  3、其次再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下:

 

  4、最后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。

posted on 2019-09-05 20:34  hdc520  阅读(563)  评论(0编辑  收藏  举报

导航