Storm入门(七)可靠性机制代码示例
一、关联代码
使用maven,代码如下。
pom.xml 参考 http://www.cnblogs.com/hd3013779515/p/6970551.html
MessageTopology.java
package cn.ljh.storm.reliability; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.storm.topology.TopologyBuilder; import org.apache.storm.utils.Utils; public class MessageTopology { public static void main(String[] args) throws Exception { TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("MessageSpout", new MessageSpout(), 1); builder.setBolt("SpilterBolt", new SpliterBolt(), 5).shuffleGrouping("MessageSpout"); builder.setBolt("WriterBolt", new WriterBolt(), 1).shuffleGrouping("SpilterBolt"); Config conf = new Config(); conf.setDebug(false); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("messagetest", conf, builder.createTopology()); Utils.sleep(20000); cluster.killTopology("messagetest"); cluster.shutdown(); } }
MessageSpou.java
package cn.ljh.storm.reliability; import org.apache.storm.topology.OutputFieldsDeclarer; import java.util.Map; import org.apache.storm.spout.SpoutOutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.base.BaseRichSpout; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Values; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class MessageSpout extends BaseRichSpout { public static Logger LOG = LoggerFactory.getLogger(MessageSpout.class); private SpoutOutputCollector _collector; private int index = 0; private String[] subjects = new String[]{ "Java,Python", "Storm,Kafka", "Spring,Solr", "Zookeeper,FastDFS", "Dubbox,Redis" }; public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { _collector = collector; } public void nextTuple() { if(index < subjects.length){ String sub = subjects[index]; //使用messageid参数,使可靠性机制生效 _collector.emit(new Values(sub), index); index++; } } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("subjects")); } @Override public void ack(Object msgId) { LOG.info("【消息发送成功!】(msgId = " + msgId + ")"); } @Override public void fail(Object msgId) { LOG.info("【消息发送失败!】(msgId = " + msgId + ")"); LOG.info("【重发进行中。。。】"); _collector.emit(new Values(subjects[(Integer)msgId]), msgId); LOG.info("【重发成功!】"); } }
SpliterBolt.java
package cn.ljh.storm.reliability; import java.util.Map; import org.apache.storm.task.OutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseRichBolt; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Tuple; import org.apache.storm.tuple.Values; public class SpliterBolt extends BaseRichBolt { OutputCollector _collector; private boolean flag = false; public void prepare(Map conf, TopologyContext context, OutputCollector collector) { _collector = collector; } public void execute(Tuple tuple) { try{ String subjects = tuple.getStringByField("subjects"); // if(!flag && subjects.equals("Spring,Solr")){ // flag = true; // int a = 1/0; // } String[] words = subjects.split(","); for(String word : words){ //注意:要携带tuple对象,用于处理异常时重发策略。 _collector.emit(tuple, new Values(word)); } //对tuple进行ack _collector.ack(tuple); }catch(Exception ex){ ex.printStackTrace(); //对tuple进行fail,使重发。 _collector.fail(tuple); } } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } }
WriterBolt.java
package cn.ljh.storm.reliability; import java.io.FileWriter; import java.io.IOException; import java.util.Map; import org.apache.storm.task.OutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseRichBolt; import org.apache.storm.tuple.Tuple; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class WriterBolt extends BaseRichBolt { private static Logger LOG = LoggerFactory.getLogger(WriterBolt.class); OutputCollector _collector; private FileWriter fileWriter; private boolean flag = false; public void prepare(Map conf, TopologyContext context, OutputCollector collector) { _collector = collector; if(fileWriter == null){ try { fileWriter = new FileWriter("D:\\test\\"+"words.txt"); } catch (IOException e) { e.printStackTrace(); } } } public void execute(Tuple tuple) { try { String word = tuple.getStringByField("word"); // if(!flag && word.equals("Kafka")){ // flag = true; // int a = 1/0; // } fileWriter.write(word + "\r\n"); fileWriter.flush(); } catch (Exception e) { e.printStackTrace(); //对tuple进行fail,使重发。 _collector.fail(tuple); } //对tuple进行ack _collector.ack(tuple); } public void declareOutputFields(OutputFieldsDeclarer declarer) { } }
二、执行效果
1、代码要点说明
MessageSpout.java
(1)发射tuple时要设置messageId来使可靠性机制生效
_collector.emit(new Values(sub), index);
(2)重写ack和fail方法
@Override public void ack(Object msgId) { LOG.info("【消息发送成功!】(msgId = " + msgId + ")"); } @Override public void fail(Object msgId) { LOG.info("【消息发送失败!】(msgId = " + msgId + ")"); LOG.info("【重发进行中。。。】"); _collector.emit(new Values(subjects[(Integer)msgId]), msgId); LOG.info("【重发成功!】"); }
SpliterBolt.java
(1)发射新tuple时设置输入tuple参数,以使新tuple和输入tuple为一个整体
_collector.emit(tuple, new Values(word));
(2)完成处理后进行ack,失败时进行fail
_collector.ack(tuple);
_collector.fail(tuple);
WriterBolt.java
(1)完成处理后进行ack,失败时进行fail
_collector.ack(tuple);
_collector.fail(tuple);
2、正常处理结果
3、放开SpliterBolt 的错误代码
结果显示能够正确的重发。
4、放开SpliterBolt 的错误代码
能够正确进行重发,但是文件中storm字符串出现了两次。
5、总结
通过以上测试,如果在第一个bolt处理时出现异常,可以让整个数据进行重发,如果第二个bolt处理时出现异常,也可以让整个数据进行重发,但是同时出现了重复处理的事务性问题,需要进行特殊的处理。
(1)如果数据入库的话,可以把messageId也进行入库保存。此messageId可以用来判断是否重复处理。
(2)事务性tuple尽量不要拆分。
(3)使用storm的Trident框架。