kafka的Java客户端示例代码(kafka_2.11-0.8.2.2)
1.使用Producer API发送消息到Kafka
从版本0.9开始被KafkaProducer替代。
HelloWorldProducer.java
package cn.ljh.kafka.kafka_helloworld; import java.util.Date; import java.util.Properties; import java.util.Random; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; public class HelloWorldProducer { public static void main(String[] args) { long events = Long.parseLong(args[0]); Random rnd = new Random(); Properties props = new Properties(); //配置kafka集群的broker地址,建议配置两个以上,以免其中一个失效,但不需要配全,集群会自动查找leader节点。 props.put("metadata.broker.list", "192.168.137.176:9092,192.168.137.176:9093"); //配置value的序列化类 //key的序列化类key.serializer.class可以单独配置,默认使用value的序列化类 props.put("serializer.class", "kafka.serializer.StringEncoder"); //配置partitionner选择策略,可选配置 props.put("partitioner.class", "cn.ljh.kafka.kafka_helloworld.SimplePartitioner"); props.put("request.required.acks", "1"); ProducerConfig config = new ProducerConfig(props); Producer<String, String> producer = new Producer<String, String>(config); for (long nEvents = 0; nEvents < events; nEvents++) { long runtime = new Date().getTime(); String ip = "192.168.2." + rnd.nextInt(255); String msg = runtime + ",www.example.com," + ip; KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg); producer.send(data); } producer.close(); } }
SimplePartitioner.java
package cn.ljh.kafka.kafka_helloworld; import kafka.producer.Partitioner; import kafka.utils.VerifiableProperties; public class SimplePartitioner implements Partitioner { public SimplePartitioner (VerifiableProperties props) { } public int partition(Object key, int a_numPartitions) { int partition = 0; String stringKey = (String) key; int offset = stringKey.lastIndexOf('.'); if (offset > 0) { partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions; } return partition; } }
2.使用Kafka High Level Consumer API接收消息
ConsumerGroupExample.java
package cn.ljh.kafka.kafka_helloworld; import kafka.consumer.ConsumerConfig; import kafka.consumer.KafkaStream; import kafka.javaapi.consumer.ConsumerConnector; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class ConsumerGroupExample { private final ConsumerConnector consumer; private final String topic; private ExecutorService executor; public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) { consumer = kafka.consumer.Consumer.createJavaConsumerConnector( createConsumerConfig(a_zookeeper, a_groupId)); this.topic = a_topic; } public void shutdown() { if (consumer != null) consumer.shutdown(); if (executor != null) executor.shutdown(); try { if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) { System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly"); } } catch (InterruptedException e) { System.out.println("Interrupted during shutdown, exiting uncleanly"); } } public void run(int a_numThreads) { Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put(topic, new Integer(a_numThreads)); Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap); List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // now launch all the threads // executor = Executors.newFixedThreadPool(a_numThreads); // now create an object to consume the messages // int threadNumber = 0; for (final KafkaStream stream : streams) { executor.submit(new ConsumerTest(stream, threadNumber)); threadNumber++; } } private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) { Properties props = new Properties(); props.put("zookeeper.connect", a_zookeeper); props.put("group.id", a_groupId); props.put("zookeeper.session.timeout.ms", "400"); props.put("zookeeper.sync.time.ms", "200"); props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props); } public static void main(String[] args) { // String zooKeeper = args[0]; // String groupId = args[1]; // String topic = args[2]; // int threads = Integer.parseInt(args[3]); String zooKeeper = "192.168.137.176:2181,192.168.137.176:2182,192.168.137.176:2183"; String groupId = "group1"; String topic = "page_visits"; int threads = 5; ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic); example.run(threads); try { Thread.sleep(10000); } catch (InterruptedException ie) { } example.shutdown(); } }
ConsumerTest.java
package cn.ljh.kafka.kafka_helloworld; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; public class ConsumerTest implements Runnable { private KafkaStream m_stream; private int m_threadNumber; public ConsumerTest(KafkaStream a_stream, int a_threadNumber) { m_threadNumber = a_threadNumber; m_stream = a_stream; } public void run() { ConsumerIterator<byte[], byte[]> it = m_stream.iterator(); //线程会一直等待有消息进入 while (it.hasNext()) System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message())); System.out.println("Shutting down Thread: " + m_threadNumber); } }
3.使用kafka Simple Consumer API接收消息
SimpleConsumerExample.java
package cn.ljh.kafka.kafka_helloworld; import kafka.api.FetchRequest; import kafka.api.FetchRequestBuilder; import kafka.api.PartitionOffsetRequestInfo; import kafka.cluster.BrokerEndPoint; import kafka.common.ErrorMapping; import kafka.common.TopicAndPartition; import kafka.javaapi.*; import kafka.javaapi.consumer.SimpleConsumer; import kafka.message.MessageAndOffset; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; /* Why use SimpleConsumer? The main reason to use a SimpleConsumer implementation is you want greater control over partition consumption than Consumer Groups give you. For example you want to: 1.Read a message multiple times 2.Consume only a subset of the partitions in a topic in a process 3.Manage transactions to make sure a message is processed once and only once Downsides of using SimpleConsumer The SimpleConsumer does require a significant amount of work not needed in the Consumer Groups: 1.You must keep track of the offsets in your application to know where you left off consuming. 2.You must figure out which Broker is the lead Broker for a topic and partition 3.You must handle Broker leader changes Steps for using a SimpleConsumer 1.Find an active Broker and find out which Broker is the leader for your topic and partition 2.Determine who the replica Brokers are for your topic and partition 3.Build the request defining what data you are interested in 4.Fetch the data 5.Identify and recover from leader changes You can change the following items if necessary. 1.Maximum number of messages to read (so we don’t loop forever) 2.Topic to read from 3.Partition to read from 4.One broker to use for Metadata lookup 5.Port the brokers listen on */ public class SimpleConsumerExample { public static void main(String args[]) { SimpleConsumerExample example = new SimpleConsumerExample(); //Maximum number of messages to read (so we don’t loop forever) long maxReads = 500; //Topic to read from String topic = "page_visits"; //Partition to read from int partition = 2; //One broker to use for Metadata lookup List<String> seeds = new ArrayList<String>(); seeds.add("192.168.137.176"); //Port the brokers listen on List<Integer> ports = new ArrayList<Integer>(); ports.add(9092); try { example.run(maxReads, topic, partition, seeds, ports); } catch (Exception e) { System.out.println("Oops:" + e); e.printStackTrace(); } } private List<String> m_replicaBrokers = new ArrayList<String>(); private List<Integer> m_replicaPorts = new ArrayList<Integer>(); public SimpleConsumerExample() { m_replicaBrokers = new ArrayList<String>(); m_replicaPorts = new ArrayList<Integer>(); } public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, List<Integer> a_ports) throws Exception { // find the meta data about the topic and partition we are interested in // PartitionMetadata metadata = findLeader(a_seedBrokers, a_ports, a_topic, a_partition); if (metadata == null) { System.out.println("Can't find metadata for Topic and Partition. Exiting"); return; } if (metadata.leader() == null) { System.out.println("Can't find Leader for Topic and Partition. Exiting"); return; } String leadBroker = metadata.leader().host(); int a_port = metadata.leader().port(); String clientName = "Client_" + a_topic + "_" + a_partition; SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName); // kafka.api.OffsetRequest.EarliestTime() finds the beginning of the data in the logs and starts streaming from there long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName); int numErrors = 0; while (a_maxReads > 0) { if (consumer == null) { consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName); } // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka FetchRequest req = new FetchRequestBuilder() .clientId(clientName) .addFetch(a_topic, a_partition, readOffset, 100000) .build(); FetchResponse fetchResponse = consumer.fetch(req); //Identify and recover from leader changes if (fetchResponse.hasError()) { numErrors++; // Something went wrong! short code = fetchResponse.errorCode(a_topic, a_partition); System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code); if (numErrors > 5) break; if (code == ErrorMapping.OffsetOutOfRangeCode()) { // We asked for an invalid offset. For simple case ask for the last element to reset readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName); continue; } consumer.close(); consumer = null; //查找新的leader metadata = findNewLeader(leadBroker, a_topic, a_partition, a_port); leadBroker = metadata.leader().host(); a_port = metadata.leader().port(); continue; } numErrors = 0; //Fetch the data long numRead = 0; for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) { if(a_maxReads > 0){ long currentOffset = messageAndOffset.offset(); //This is needed since if Kafka is compressing the messages, //the fetch request will return an entire compressed block even if the requested offset isn't the beginning of the compressed block. if (currentOffset < readOffset) { System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset); continue; } readOffset = messageAndOffset.nextOffset(); ByteBuffer payload = messageAndOffset.message().payload(); byte[] bytes = new byte[payload.limit()]; payload.get(bytes); System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8")); numRead++; a_maxReads--; } } //If we didn't read anything on the last request we go to sleep for a second so we aren't hammering Kafka when there is no data. if (numRead == 0) { try { Thread.sleep(1000); } catch (InterruptedException ie) { } } } if (consumer != null) consumer.close(); } public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime, String clientName) { TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition); Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>(); requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1)); kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest( requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName); OffsetResponse response = consumer.getOffsetsBefore(request); if (response.hasError()) { System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) ); return 0; } long[] offsets = response.offsets(topic, partition); return offsets[0]; } private PartitionMetadata findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_oldLeader_port) throws Exception { for (int i = 0; i < 3; i++) { boolean goToSleep = false; PartitionMetadata metadata = findLeader(m_replicaBrokers, m_replicaPorts, a_topic, a_partition); if (metadata == null) { goToSleep = true; } else if (metadata.leader() == null) { goToSleep = true; } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && a_oldLeader_port == metadata.leader().port() && i == 0) { // first time through if the leader hasn't changed, give ZooKeeper a second to recover // second time, assume the broker did recover before failover, or it was a non-Broker issue // goToSleep = true; } else { return metadata; } if (goToSleep) { try { Thread.sleep(1000); } catch (InterruptedException ie) { } } } System.out.println("Unable to find new leader after Broker failure. Exiting"); throw new Exception("Unable to find new leader after Broker failure. Exiting"); } private PartitionMetadata findLeader(List<String> a_seedBrokers, List<Integer> a_port, String a_topic, int a_partition) { PartitionMetadata returnMetaData = null; loop: for (int i = 0; i < a_seedBrokers.size(); i++) { String seed = a_seedBrokers.get(i); SimpleConsumer consumer = null; try { consumer = new SimpleConsumer(seed, a_port.get(i), 100000, 64 * 1024, "leaderLookup"); List<String> topics = Collections.singletonList(a_topic); TopicMetadataRequest req = new TopicMetadataRequest(topics); kafka.javaapi.TopicMetadataResponse resp = consumer.send(req); List<TopicMetadata> metaData = resp.topicsMetadata(); for (TopicMetadata item : metaData) { for (PartitionMetadata part : item.partitionsMetadata()) { if (part.partitionId() == a_partition) { returnMetaData = part; break loop; } } } } catch (Exception e) { System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic + ", " + a_partition + "] Reason: " + e); } finally { if (consumer != null) consumer.close(); } } if (returnMetaData != null) { m_replicaBrokers.clear(); m_replicaPorts.clear(); for (BrokerEndPoint replica : returnMetaData.replicas()) { m_replicaBrokers.add(replica.host()); m_replicaPorts.add(replica.port()); } } return returnMetaData; } }