【BZOJ3930】选数
【BZOJ3930】选数
Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。
你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
Sample Input
2 2 2 4
Sample Output
3
Hint
【样例解释】
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
【数据范围】
对于30%的数据,N≤5,H-L≤5
对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5
我们先将\(r=\lfloor \frac{r}{k}\rfloor,l=\lfloor \frac{l-1}{k}\rfloor\)。
然后我们直接用套路了:\(\displaystyle\sum_{d=1}^{l}\mu(d)(\lfloor \frac{r}{k}\rfloor-\lfloor \frac{l}{k}\rfloor)^{n}\)。
然后处理\(\mu(d)\)的前缀和的时候要用杜教筛。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 10000005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=1000000007;
ll n,k,l,r;
bool vis[N];
int pri[N],mu[N];
void pre(int n) {
mu[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) {
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0]&&1ll*i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) {
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) mu[i]+=mu[i-1];
}
map<int,int>sum;
ll cal(ll n) {
if(n<=1e7) return mu[n];
if(sum.find(n)!=sum.end()) return sum[n];
ll ans=1,last;
for(int i=2;i<=n;i=last+1) {
last=n/(n/i);
ans-=(last-i+1)*cal(n/i);
}
return sum[n]=ans;
}
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
ll solve(ll l,ll r) {
ll ans=0,last;
for(ll i=1;i<=r;i=last+1) {
ll x=!(l/i)?r:l/(l/i),y=r/(r/i);
last=min(x,y);
ans=(ans+(cal(last)-cal(i-1)+mod)*ksm(r/i-l/i,n)%mod)%mod;
}
return ans;
}
int main() {
pre(10000000);
n=Get(),k=Get(),l=Get(),r=Get();
l=(l-1)/k;
r/=k;
cout<<solve(l,r);
return 0;
}