BSOJ 3899 -- 【CQOI2014】 数三角形
Description
给定一个n*m的网格,请计算三个点都在格点上的三角形共有多少个。下图为4*4的网格上的一个三角形。
注意三角形的三点不能共线。
Input
输入一行,包含两个空格分隔的正整数m和n。
Output
输出一个正整数,为所求三角形的数量。
Sample Input
样例输入1:1 1
样例输入2:2 2
Sample Output
样例输出1:4
样例输出2:76
先求出全集,再去掉三点共线的情况。
那如何枚举三点共线的情况呢?先将横竖两种情况算了,再考虑斜着的。枚举斜着的方法有很多,但比较可行的是先固定两个点,再计算两个点之间的点数。具体实现就是枚举两点的相对位置,也可以理解为向量,然后就有个位置可以当左上角的点。这两点之间的点数就是。最后还要,对称性嘛。
这么枚举的好处是,两点之间的相对位置去确定了之后,中间点的数量就确定了。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#define ll long long
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
ll n,m;
ll ans,tot;
ll gcd(ll a,ll b) {return !b?a:gcd(b,a%b);}
int main() {
n=Get(),m=Get();
n++,m++;
tot=n*m;
ans=tot*(tot-1)/2*(tot-2)/3;
if(n>=3) ans-=n*(n-1)/2*(n-2)/3*m;
if(m>=3) ans-=m*(m-1)/2*(m-2)/3*n;
for(int i=1;i<n;i++) {
for(int j=1;j<m;j++) {
ans-=(n-i)*(m-j)*(gcd(i,j)-1)*2;
}
}
cout<<ans;
return 0;
}