[BZOJ3698] XWW的难题

Description

XWW是个影响力很大的人,他有很多的追随者。这些追随者都想要加入XWW教成为XWW的教徒。但是这并不容易,需要通过XWW的考核。
XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性。
称一个N *N的矩阵满足XWW性当且仅当:(1)A[N ] [N]=0;(2)矩阵中每行的最后一个元素等于该行前N-1个数的和;(3)矩阵中每列的最后一个元素等于该列前N-1个数的和。
现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足XWW性。同时XWW还要求A中的元素之和尽量大。

Input

第一行一个整数N,N ≤ 100。
接下来N行每行包含N个绝对值小于等于1000的实数,最多一位小数。

Output

输出一行,即取整后A矩阵的元素之和的最大值。无解输出No。

Sample Input

4
3.1 6.8 7.3 17.2
9.6 2.4 0.7 12.7
3.6 1.2 6.5 11.3
16.3 10.4 14.5 0 

Sample Output

129

Solution

把每行每列当做一个点,那么每条边可以抽象为一条边。

建立源点汇点,对于每行\(s\)向这个点连边,流量下界为\(\lfloor x\rfloor\),上界为\(\lceil x \rceil\),对于每列同理,向\(t\)连边。

对于每个点,设当前点为\(i\)\(j\)列,那么\(i\)行向\(j\)列连边,上界下界同理。

那么如果没有可行流就无解,否则答案就是最大流\(*3\),这个是因为每个点的权值都被算了三次。

注意可行流不是\(dinic\)跑出来的流量!!我被这里坑了好久。

#include<bits/stdc++.h>
using namespace std;
 
void read(int &x) {
    x=0;int f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
 
void print(int x) {
    if(x<0) putchar('-'),x=-x;
    if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}

#define lf double
#define ll long long 

const int maxn = 2e5+10;
const int inf = 1e9;
const lf eps = 1e-8;

double a[102][102];
int head[maxn],tot=1,dis[maxn],r[maxn],ban[maxn],SIZE,n;
struct edge{int to,nxt,w;}e[maxn<<1];

void add2(int u,int v,int w) {e[++tot]=(edge){v,head[u],w},head[u]=tot;}
void add(int u,int v,int w) {add2(u,v,w),add2(v,u,0);}

void ins(int u,int v,int up,int down) {r[u]-=down,r[v]+=down,add(u,v,up-down);}

#define p(x,y) ((x)*(n-1)+(y))

int bfs(int s,int t) {
	memset(dis,-1,SIZE);
	queue<int > q;q.push(s);dis[s]=0;
	while(!q.empty()) {
		int now=q.front();q.pop();
		for(int v,i=head[now];i;i=e[i].nxt)
			if(e[i].w>0&&dis[v=e[i].to]<0&&!ban[i]) {
				dis[v]=dis[now]+1;
				if(v==t) return 1;
				q.push(v);
			}
	}return 0;
}

int dfs(int x,int t,int f) {
	if(x==t) return f;
	int used=0;
	for(int v,i=head[x];i;i=e[i].nxt)
		if(e[i].w>0&&dis[v=e[i].to]==dis[x]+1&&(!ban[i])) {
			int d=dfs(e[i].to,t,min(f-used,e[i].w));
			if(d>0) e[i].w-=d,e[i^1].w+=d,used+=d;
			if(used==f) break;
		}
	if(!used) dis[x]=-1;
	return used;
}

int dinic(int s,int t) {
	int flow=0;
	while(bfs(s,t)) flow+=dfs(s,t,inf);
	return flow;
}

int main() {
	read(n);int ans=0;
	int s=n*2+1,t=s+1,S=t+1,T=S+1;SIZE=(T+2)*4;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++) scanf("%lf",&a[i][j]);
	for(int i=1;i<=n-1;i++)
		for(int j=1;j<=n-1;j++)
			ins(i,j+n,ceil(a[i][j]),trunc(a[i][j]));
	for(int i=1;i<=n-1;i++) {
		ins(s,i,ceil(a[i][n]),trunc(a[i][n]));
		ins(i+n,t,ceil(a[n][i]),trunc(a[n][i]));
	}
	int res=tot+1,sum=0;
	add(t,s,inf);
	for(int i=1;i<=n*2+2;i++)
		if(r[i]>0) add(S,i,r[i]),sum+=r[i];
		else if(r[i]) add(i,T,-r[i]);
	ans=dinic(S,T);
	if(ans!=sum) return puts("NO"),0;ans=e[res^1].w;
	for(int i=res;i<=tot;i++) ban[i]=1;
	write((ans+dinic(s,t))*3);
	return 0;
}
posted @ 2019-03-19 11:28  Hyscere  阅读(470)  评论(0编辑  收藏  举报