[bzoj2671] Calc
Description
给出N,统计满足下面条件的数对(a,b)的个数:
- 1<=a<b<=N
- a+b整除a*b
Input
一行一个数N
Output
一行一个数表示答案
Sample Input
15
Sample Output
4
Solution
题目求的是:
\[\sum_{i=1}^n\sum_{j=i+1}^n[i+j|ij]
\]
不妨设\(d=(i,j),x\cdot d=i,y\cdot d =j\),那么后面的式子就是:
\[d(x+y)|xyd^2\\
x+y|xyd
\]
因为\(x \perp y\),可得:
\[x+y|d
\]
设\(d=k(x+y)\),得\(j=yk(x+y)\leqslant n\),所以对于互质的数对\(x,y\),有\(\lfloor\frac{n}{y(x+y)}\rfloor\)的贡献。
考虑到\(y(x+y)\leqslant n\),有\(y\leqslant\sqrt{n}\),所以答案就是:
\[ans=\sum_{y=1}^\sqrt{n}\sum_{x=1}^{\min(\sqrt{n},y-1)}[(x,y)=1]\lfloor\frac{n}{y(x+y)}\rfloor
\]
然后莫反下可得:
\[ans=\sum_{d=1}^\sqrt{n}\mu(d)\sum_{y=1}^{\lfloor\frac{\sqrt{n}}{d}\rfloor}\sum_{x=1}^{y-1}\lfloor\frac{n}{d^2y(x+y)}\rfloor
\]
然后后面数论分块下然后全程暴力,(凭借信仰过掉此题)
考虑下时间复杂度,总枚举次数大概是:
\[\sum_{i=1}^{\sqrt{n}}\frac{\sqrt{n}}{i}\sqrt{\frac{\sqrt{n}}{i}}=n^{\frac{3}{4}}\cdot \sum_{i=1}^{\sqrt{n}}i^{-\frac{3}{2}}
\]
(因为后面不会算)带入数据可得后面那个\(\sum\)大概是2,所以总复杂度就是\(O(n^\frac{3}{4})\)
update: 后面那个是黎曼函数\(\zeta(x)=\sum_{i=1}^\infty i^{-x}\),可以证明当\(x=1.5\)时这个函数值收敛,且趋近于\(2.6\)左右,可以看作是\(O(1)\),具体证明可以看\(wikipedia\),虽然我也不会。
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define ONLINE_JUDGE
#ifdef ONLINE_JUDGE
#define getchar() ((p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin)),p1==p2)?EOF:*p1++)
#endif
namespace fast_IO {
char buf[1<<21],*p1=buf,*p2=buf;
template <typename T> inline void read(T &x) {
x=0;T f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
template <typename T,typename... Args> inline void read(T& x,Args& ...args) {
read(x),read(args...);
}
char buf2[1<<21],a[80];int p,p3=-1;
inline void flush() {fwrite(buf2,1,p3+1,stdout),p3=-1;}
template <typename T> inline void write(T x) {
if(p3>(1<<20)) flush();
if(x<0) buf2[++p3]='-',x=-x;
do {a[++p]=x%10+48;} while(x/=10);
do {buf2[++p3]=a[p];} while(--p);
buf2[++p3]='\n';
}
template <typename T,typename... Args> inline void write(T x,Args ...args) {
write(x),write(args...);
}
}
using fast_IO :: read;
using fast_IO :: write;
using fast_IO :: flush;
const int maxn = 1e5+10;
int vis[maxn],mu[maxn],pri[maxn],tot;
void sieve() {
mu[1]=1;
for(int i=2;i<maxn;i++) {
if(!vis[i]) pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<maxn;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
mu[i*pri[j]]=-mu[i];
}
}
}
int calc(int n,int m) {
int ans=0;
for(int i=1;i<=m;i++) {
int t=n/i,T=i+1;
while(T<=t&&T<i*2) {
int pre=T;T=min(i*2-1,t/(t/T));
ans+=(T-pre+1)*(t/T);T++;
}
}return ans;
}
signed main() {
sieve();
int n,ans=0,m;read(n);m=sqrt(n);
for(int i=1;i<=m;i++) if(mu[i]) ans+=calc(n/(i*i),m/i)*mu[i];
write(ans);
flush();
return 0;
}