【动手学深度学习pytorch】学习笔记 8.6. 循环神经网络的简洁实现
8.6. 循环神经网络的简洁实现 — 动手学深度学习 2.0.0-beta0 documentation (d2l.ai)
使用深度学习框架的高级API提供的函数 更有效地 实现相同的语言模型:根据用户提供的文本的前缀生成后续文本
知识点:nn.RNN(input_size, hidden_size, num_layers)
下面部分知识点是第九章的,提前用到了,可以热热身。到第九章再详细看。
LSTM:nn.LSTM()是9.2的内容,这里暂且囫囵吞枣,绕过去。9.2. 长短期记忆网络(LSTM) — 动手学深度学习 2.0.0-beta0 documentation (d2l.ai)
pytorch中RNN参数的详细解释_lwgkzl的博客-CSDN博客_pytorch rnn
torch.nn.RNN(input_size, hidden_size, num_layers)函数解析_Hanjieee的博客-CSDN博客_num_layers
- input_size:每个token作为输入时的向量长度
- hidden_size:中间的隐层向量长度
- num_layers:RNN模型的层数 ( 9.3. 深度循环神经网络 — 动手学深度学习 2.0.0-beta0 documentation (d2l.ai) )
Pytorch中nn.RNN()基本用法和输入输出_Fantine_Deng的博客-CSDN博客_nn.rnn
测试nn.RNN()
import torch
from torch import nn
######### 定义模型和输入 #########
rnn = nn.RNN(2, 3, 1) # (input_size, hidden_size, num_layers)
input = torch.randn(5, 1, 2) # (seq_len, batch_size, input_size)
h0 = torch.randn(1, 1, 3) # (num_layers, batch_size, hidden_size)
######### 将输入喂入模型 #########
output, hn = rnn(input, h0)
#########查看模型参数#########
print(rnn._parameters)
# https://blog.csdn.net/Fantine_Deng/article/details/111356280
OrderedDict([
('weight_ih_l0', Parameter containing:
tensor([[-0.0892, 0.1417],
[-0.3719, 0.1958],
[-0.0948, -0.2139]], requires_grad=True)),
('weight_hh_l0', Parameter containing:
tensor([[ 0.4076, 0.2693, 0.0957],
[ 0.0461, 0.2012, 0.1977],
[-0.3464, -0.3319, -0.5038]], requires_grad=True)),
('bias_ih_l0', Parameter containing:
tensor([ 0.2128, -0.5474, 0.5349], requires_grad=True)),
('bias_hh_l0', Parameter containing:
tensor([0.4805, 0.4561, 0.0080], requires_grad=True))])
循环神经网络的简洁实现 源代码:
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256 # 256个隐藏单元
rnn_layer = nn.RNN(len(vocab), num_hiddens)
state = torch.zeros((1, batch_size, num_hiddens)) # 形状是(隐藏层数,批量大小,隐藏单元数)
print('state.shape', state.shape)
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
print('X.shape', X.shape)
Y, state_new = rnn_layer(X, state)
print('Y.shape', Y.shape)
print('state_new.shape', state_new.shape)
class RNNModel(nn.Module):
"""循环神经网络模型"""
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
# 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
# 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
# 它的输出形状是(时间步数*批量大小,词表大小)。
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
# nn.GRU以张量作为隐状态
return torch.zeros((self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device)
else:
# nn.LSTM以元组作为隐状态
return (torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device),
torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device))
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
print(d2l.predict_ch8('time traveller', 10, net, vocab, device))
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
可以看到,最开始的预测也是很烂:time traveller<unk>pzppppppp
前50轮:
time traveller the the the the the the the the the the the the t
time traveller and and and and and and and and and and and and a
time traveller and the the that the the the the the the the the
time traveller the this this thing the this this this this this
time traveller the and he this thith sime thave the this the thi
450-500轮:
time traveller held in his hand was a glitteree and so ou vabkt
time traveller held in his hald was that sxistertare pals gs our
time traveller held in timy beti he trivellem but sowing and wny
time travellerit s against reason said the medical man there are
time traveller after the pauserequired for the grome was e begin
perplexity 1.4, 83962.5 tokens/sec on cpu
time traveller after the pauserequired for the grome was e begin
课本结论:与上一节相比,由于深度学习框架的高级API对代码进行了更多的优化, 该模型在较短的时间内达到了较低的困惑度。