神经网络与深度学习(邱锡鹏)编程练习5 CNN

卷积神经网络(CNN)

问题描述:

利用卷积神经网络,实现对MNIST 数据集的分类问题。

数据集:

MNIST数据集包括60000张训练图片和10000张测试图片。图片样本的数量已经足够训练一个很复杂的模型(例如 CNN的深层神经网络)。它经常被用来作为一个新 的模式识别模型的测试用例。而且它也是一个方便学生和研究者们执行用例的数据集。除此之外,MNIST数据集是一个相对较小的数据集,可以在你的笔记本CPUs上面直接执行

题目要求:

tensorflow版的卷积神经网路 conv2d() 和max_pool_2x2()函数,然后补全两层卷积的 8个空;

pytorch版的卷积神经网络 需要补齐 self.conv1 中 nn.Conv2d( ) 和 self.conv2( ) 的参数,还需要填写 x = x.view( )中的内容。

两个版本的训练精度都应该在 96% 以上。

posted on 2022-06-07 12:54  HBU_DAVID  阅读(320)  评论(0编辑  收藏  举报

导航