神经网络与深度学习(邱锡鹏)编程练习4 FNN 反向传播 梯度下降 numpy
题目介绍:【人工智能导论:模型与算法】MOOC 8.3 误差后向传播(BP) 例题 编程验证 - HBU_DAVID - 博客园 (cnblogs.com)
本次实验,使用numpy实现
1 正向传播 神经网络与深度学习(邱锡鹏)编程练习4 FNN 正向传播 numpy - HBU_DAVID - 博客园 (cnblogs.com)
2 损失函数计算 loss_fuction()
3 反向传播 back_propagate()
4 梯度下降法更新参数W
5 使用pytorch的L.backward()函数实现反向传播,替代原有自定义back_propagate()
6 比较 自定义反向传播 和 pytorch的反向传播
源代码:自定义反向传播 back_propagate()
查看代码
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a
def forward_propagate(x1, x2): # 正向传播
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2)
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2)
print("正向传播:", round(out_o1, 5), round(out_o2, 5))
return out_o1, out_o2, out_h1, out_h2
def loss_fuction(out_o1, out_o2, y1, y2): # 损失函数
# print(out_o1, out_o2, y1, y2)
loss = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2 # 考虑 : t.nn.MSELoss()
print("损失函数:", loss)
return loss
def back_propagate(out_o1, out_o2, out_h1, out_h2): # 反向传播
d_o1 = out_o1 - y1
d_o2 = out_o2 - y2
d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2
return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8
def update_w(w1, w2, w3, w4, w5, w6, w7, w8): # 梯度下降,更新权值
step = 1 # 步长 学习率
w1 = w1 - step * d_w1
w2 = w2 - step * d_w2
w3 = w3 - step * d_w3
w4 = w4 - step * d_w4
w5 = w5 - step * d_w5
w6 = w6 - step * d_w6
w7 = w7 - step * d_w7
w8 = w8 - step * d_w8
return w1, w2, w3, w4, w5, w6, w7, w8
if __name__ == "__main__":
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8 # 可以给随机值,为配合PPT,给的指定值
x1, x2 = 0.5, 0.3 # 输入值
y1, y2 = 0.23, -0.07 # 正数可以准确收敛;负数不行。why? 因为用sigmoid输出,y1, y2 在 (0,1)范围内。
# print("输入值:x1, x2;",x1, x2, "输出值:y1, y2:", y1, y2)
eli = []
lli = []
for i in range(10):
print("=====第" + str(i) + "轮=====")
out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2)
error = loss_fuction(out_o1, out_o2, y1, y2) # 正向传播
d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2) # 反向传播
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8) # 梯度下降,更新权值
eli.append(i)
lli.append(error)
plt.plot(eli, lli)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
源代码:pytorch的反向传播 L.backward()
查看代码
import torch
import matplotlib.pyplot as plt
def sigmoid(z):
a = 1 / (1 + torch.exp(-z))
return a
def forward_propagate(x1, x2):
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1) # out_h1 = torch.sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2) # out_h2 = torch.sigmoid(in_h2)
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1) # out_o1 = torch.sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2) # out_o2 = torch.sigmoid(in_o2)
print("正向计算:", out_o1.data, out_o2.data)
return out_o1, out_o2
def loss_fuction(y1_pred, y2_pred, y1, y2): # 损失函数
# print(y1_pred, y2_pred, y1, y2)
loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2 # 考虑 : t.nn.MSELoss()
print("损失函数:", loss)
return loss
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 1
w1.data = w1.data - step * w1.grad.data
w2.data = w2.data - step * w2.grad.data
w3.data = w3.data - step * w3.grad.data
w4.data = w4.data - step * w4.grad.data
w5.data = w5.data - step * w5.grad.data
w6.data = w6.data - step * w6.grad.data
w7.data = w7.data - step * w7.grad.data
w8.data = w8.data - step * w8.grad.data
w1.grad.data.zero_() # 注意:将w中所有梯度清零
w2.grad.data.zero_()
w3.grad.data.zero_()
w4.grad.data.zero_()
w5.grad.data.zero_()
w6.grad.data.zero_()
w7.grad.data.zero_()
w8.grad.data.zero_()
return w1, w2, w3, w4, w5, w6, w7, w8
if __name__ == "__main__":
x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
[0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8]) # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True
# print("=====更新前的权值=====")
# print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
eli = []
lli = []
for i in range(10):
print("=====第" + str(i) + "轮=====")
y1_pred, y2_pred = forward_propagate(x1, x2) # 前向传播
L = loss_fuction(y1_pred, y2_pred, y1, y2) # 前向传播,求 Loss,构建计算图
L.backward() # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
# print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
# round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
# round(w8.grad.item(), 2))
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
eli.append(i)
lli.append(L.data.numpy())
# print("更新后的权值")
# print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
plt.plot(eli, lli)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()