利用Elasticsearch实现地理位置、城市搜索服务
最近用到一些简单的地理位置查询接口,基于当前定位获取用户所在位置信息(省市区),然后基于该信息查询当前区域的......提供服务。
然后就自己研究了下GIS,作为一个程序员。自己能不能实现这个功能呢?答案当然是可以。立即开干。
思路:找到数据,写入数据库,利用Elasticsearch强大的搜索能力和丰富的GIS数据处理能力实现。
GIS相关专业信息参考(bd上找的,还算专业):程序员GIS入门|前后端都要懂一点的GIS知识
经过一番寻找,“功夫不负有心人”,在网上找到了锐多宝 数据,比较完整。下载下来,格式是shape格式。
第一步:下载数据,从锐多宝下载
第二步:写python脚本预处理数据:ShapFile 转 GeoJSON,ES处理GeoJSON比较强
import geopandas as gpd
# 读取 Shapefile
shapefile_path = 'D:/data/gis/2023年_CTAmap_1.12版/2023年省级/2023年省级.shp'
gdf = gpd.read_file(shapefile_path)
# 检查 GeoDataFrame
print(gdf.head())
# 如果需要,可以对数据进行预处理,比如过滤、选择特定列等
# gdf = gdf[['column1', 'column2', 'geometry']]
# 将 GeoDataFrame 转换为标准的 Pandas DataFrame (如果需要的话)
df = gdf.drop('geometry', axis=1).join(gdf['geometry'].apply(lambda x: gpd.GeoSeries(x).to_json()))
# 将 Pandas DataFrame 导出为 JSON 文件
output_json_path = 'D:/data/gis/2023-province-GeoJSON.gesjson'
# df.to_json(output_json_path, orient='records')
# 如果你想保留 GeoJSON 格式,可以直接保存 GeoDataFrame
gdf.to_file(output_json_path, driver='GeoJSON')
第三步:利用Python脚本将GeoJSON写入Elasticsearch
from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk import json # 连接到 Elasticsearch es = Elasticsearch("http://localhost:9200") # 检查连接 if not es.ping(): raise ValueError("Connection failed") # 删除旧索引(如果存在) if es.indices.exists(index="province2023_geoshape_index_001"): es.indices.delete(index="province2023_geoshape_index_001") # 创建索引并定义 Mapping mapping = { "mappings": { "properties": { "location": { "type": "geo_shape" }, "name": { "type": "text" } } } } # 创建索引 es.indices.create(index="province2023_geoshape_index_001", body=mapping) # 读取 GeoJSON 文件 with open("D:/data/gis/2023-province-GeoJSON.gesjson", "r", encoding="utf-8") as file: geojson_data = json.load(file) # 提取 GeoJSON 特征集合 features = geojson_data.get("features", []) # 准备数据以供导入 documents = [] for feature in features: doc = { "location": { "type": feature["geometry"]["type"], "coordinates": feature["geometry"]["coordinates"] } } if "properties" in feature: doc.update(feature["properties"]) documents.append(doc) # 定义批量大小 batch_size = 100 # 每次批量导入的数量 # 准备 actions def generate_actions(documents): for doc in documents: yield { "_index": "province2023_geoshape_index_001", "_source": doc } # 分批执行批量导入 for i in range(0, len(documents), batch_size): end = min(i + batch_size, len(documents)) success, _ = bulk(es, generate_actions(documents[i:end])) print(f"Bulk {i}-{end} completed, {success} documents indexed.") print("All data indexed.")
第四步:计算出每条数据的区域的中心点(扩展功能,原始数据只有polygon多边形数据)
from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk import json import ssl # 连接到 Elasticsearch es = Elasticsearch("http://localhost:9200") # 检查连接 if not es.ping(): raise ValueError("Connection failed") # 删除旧索引(如果存在) if es.indices.exists(index="province2023_centroid_geoshape_index_001"): es.indices.delete(index="province2023_centroid_geoshape_index_001") # 创建索引并定义 Mapping mapping = { "mappings": { "properties": { "location": { "type": "geo_shape" }, "centroid": { # 新增字段 "type": "geo_point" }, "name": { "type": "text" } } } } # 创建索引 es.indices.create(index="province2023_centroid_geoshape_index_001", body=mapping) # 读取 GeoJSON 文件 with open("D:/data/gis/2023-province-GeoJSON.gesjson", "r", encoding="utf-8") as file: geojson_data = json.load(file) # 提取 GeoJSON 特征集合 features = geojson_data.get("features", []) def calculate_centroid(polygons): total_area = 0.0 total_x = 0.0 total_y = 0.0 for polygon in polygons: # 现在 polygon 是一个包含多个坐标的列表 centroid = calculate_simple_polygon_centroid(polygon) area = calculate_polygon_area(polygon) total_area += area total_x += centroid[0] * area total_y += centroid[1] * area if total_area == 0: # 如果总面积为零,则返回原点作为中心点 return [0, 0] else: return [total_x / total_area, total_y / total_area] # is_coordinates_list方法 # 以下结构返回True,polygon 是一个包含坐标列表的列表,为什么会有这个结构呢?其实就是我们日常所见到的区划中的“飞地” # [ # [[x1, y1], [x2, y2], [x3, y3], ...], # [[x1, y1], [x2, y2], [x3, y3], ...] # 如果有内部孔洞 # ] # 以下结构返回Fasle,包含单个坐标的列表 # [ # [x1, y1], # [x2, y2], # [x3, y3], # ... # ] def is_coordinate(coord): return ( isinstance(coord, (list, tuple)) and len(coord) == 2 and all(isinstance(c, (int, float)) for c in coord) ) def is_coordinates_list(coords): # 检查 coords 是否是一个包含坐标列表的列表 if isinstance(coords, list): if all(isinstance(c, list) and all(is_coordinate(coord) for coord in c) for c in coords): return True return False def calculate_simple_polygon_centroid(polygon): # 确定 polygon 的结构 if is_coordinates_list(polygon): # polygon 是一个包含坐标列表的列表 x_sum = sum(coord[0] for coord in polygon[0]) y_sum = sum(coord[1] for coord in polygon[0]) num_points = len(polygon[0]) else: # print(False, polygon[0]) # polygon 是一个包含多个坐标的列表 x_sum = sum(coord[0] for coord in polygon) y_sum = sum(coord[1] for coord in polygon) num_points = len(polygon) # 计算平均坐标 centroid_x = x_sum / num_points centroid_y = y_sum / num_points return [centroid_x, centroid_y] def calculate_polygon_area(polygon): # 计算简单多边形的面积 area = 0.0 if is_coordinates_list(polygon): # polygon 是一个包含坐标列表的列表 num_points = len(polygon[0]) for i in range(num_points): j = (i + 1) % num_points area += polygon[0][i][0] * polygon[0][j][1] area -= polygon[0][j][0] * polygon[0][i][1] else: # polygon 是一个包含多个坐标的列表 num_points = len(polygon) for i in range(num_points): j = (i + 1) % num_points area += polygon[i][0] * polygon[j][1] area -= polygon[j][0] * polygon[i][1] return abs(area) / 2.0 # 准备数据以供导入 documents = [] for feature in features: # 检查坐标是否在有效范围内 coordinates = feature["geometry"]["coordinates"] centroid = calculate_centroid(coordinates) doc = { "location": { "type": feature["geometry"]["type"], "coordinates": coordinates }, "centroid": centroid, # 添加中心点 } if "properties" in feature: doc.update(feature["properties"]) documents.append(doc) # 定义批量大小 batch_size = 100 # 每次批量导入的数量 # 准备 actions def generate_actions(documents): for doc in documents: yield { "_index": "district2023_centroid_geoshape_index_001", "_source": doc } # 分批执行批量导入 for i in range(0, len(documents), batch_size): end = min(i + batch_size, len(documents)) success, errors = bulk(es, generate_actions(documents[i:end])) if errors: print(f"Bulk {i}-{end} completed, {success} documents indexed, but {len(errors)} documents failed.") for error in errors: print(error) else: print(f"Bulk {i}-{end} completed, {success} documents indexed.") print("All data indexed.")
第五步:利用elasticsearch的pipeline和reindex能力预处理数据
# geo_centroid 聚合是一种高级聚合,它可以计算一组地理位置的中心点。在 Elasticsearch 中,这个功能属于高级特性,通常只在 X-Pack(现在称为 Elastic Security 和 Elastic Observability)的许可证中可用。 # 试用30天可以体验 POST /province2023_geoshape_index_001/_search { "size": 0, "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } } POST province2023_centroid_geoshape_index_001/_search { "query": { "term": { "省.keyword": { "value": "陕西省" } } } } PUT _ingest/pipeline/copy_field_pipeline { "description": "Copy the value of one field to another", "processors": [ { "copy": { "from": "省", "to": "province_name" } } ] } GET province2023_centroid_geoshape_index_001/_mapping GET province2023_centroid_geoshape_index_001/_mapping PUT _ingest/pipeline/province_multiple_copy_fields_pipeline { "description": "Copy multiple fields to new fields and rename fields to new fields", "processors": [ { "set": { "field": "province_name", "value": "{{{省}}}" } }, { "remove": { "field": "省" } }, { "rename": { "field": "省级码", "target_field": "province_code" } }, { "rename": { "field": "省类型", "target_field": "province_type" } }, { "rename": { "field": "VAR_NAME", "target_field": "var_name" } }, { "rename": { "field": "ENG_NAME", "target_field": "eng_name" } }, { "rename": { "field": "FIRST_GID", "target_field": "first_gid" } }, { "rename": { "field": "FIRST_TYPE", "target_field": "first_type" } } ] } GET province2023_centroid_geoshape_index_002/_count GET province2023_centroid_geoshape_index_002/_mapping DELETE province2023_centroid_geoshape_index_002 PUT province2023_centroid_geoshape_index_002 { "mappings": { "properties": { "eng_name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "first_gid": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "first_type": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "var_name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "centroid": { "type": "geo_point" }, "location": { "type": "geo_shape" }, "name": { "type": "text" }, "year": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } } } } } POST _reindex { "source": { "index": "province2023_centroid_geoshape_index_001" }, "dest": { "index": "province2023_centroid_geoshape_index_002", "pipeline": "province_multiple_copy_fields_pipeline" } } GET province2023_centroid_geoshape_index_002/_search
第六步:查询数据 geo_bounding_box 、geo_distance
# centroid字段的type是 geo_point,存储的经纬度形式是数组Geopoint as an array # geo_bounding_box 可查找边框内的所有地理坐标点。 POST province2023_centroid_geoshape_index_002/_search { "query": { "geo_bounding_box": { "centroid": { "top_left": { "lat": 42, "lon": -72 }, "bottom_right": { "lat": 40, "lon": -74 } } } } }
# geo_distance 距离查询,例如查询距离目标经纬度坐标点方圆200km的点 POST province2023_centroid_geoshape_index_002/_search { "query": { "geo_distance": { "distance": 100, "centroid": { "lat": 40.09937484066758, "lon": 116.41960604340115 } } } } POST province2023_centroid_geoshape_index_002/_search { "query": { "bool": { "must": { "match": { "province_name":"xx市" } }, "filter": { "geo_distance": { "distance": "2km", "centroid": { "lat": 40.09937484066758, "lon": 116.41960604340115 } } } } } } POST province2023_centroid_geoshape_index_002/_search { "query": { "bool": { "must": { "match": { "province_name":"xx市" } }, "filter": { "geo_distance": { "distance": "200km", "location": { "lat": 40.09937484066758, "lon": 116.41960604340115 } } } } } }