Elasticsearch中关于transform的一个问题分析

背景:现在有一个业务,派件业务,业务员今天去派件(扫描产生一条派件记录),派件可能会有重复派件的情况,第二天再派送(记录被更新,以最新的派件操作为准)。现在需要分业务员按天统计每天的派件数量。
es版本:7.15.1
1、创建索引:

PUT t_test_001
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "city_id": {
        "type": "long"
      },
      "city_name": {
        "type": "keyword"
      },
      "create_time": {
        "type": "date"
      },
      "push_date": {
        "type": "date"
      },
      "update_time": {
        "type": "date"
      }
    }
  }
}

2、插入测试数据

POST /t_test_001/_bulk
{ "index": {}}
{ "order_no" : 1,"employee":"张三",  "create_time" : "2021-12-06T08:00:00.000Z", "push_date" : "2021-12-06T08:00:00.000Z", "update_time" : "2021-12-06T08:00:00.000Z"}
{ "index": {}}
{ "order_no" : 2,"employee":"张三",  "create_time" : "2021-12-06T08:00:00.000Z", "push_date" : "2021-12-06T08:00:00.000Z", "update_time" : "2021-12-06T08:00:00.000Z"}
{ "index": {}}
{ "order_no" : 3,"employee":"张三",  "create_time" : "2021-12-07T00:00:00.000Z", "push_date" : "2021-12-07T00:00:00.000Z", "update_time" : "2021-12-07T00:00:00.000Z"}
{ "index": {}}
{ "order_no" : 4,"employee":"张三",  "create_time" : "2021-12-07T00:00:00.000Z", "push_date" : "2021-12-07T00:00:00.000Z", "update_time" : "2021-12-07T00:00:00.000Z"}
{ "index": {}}
{ "order_no" : 5,"employee":"王五",  "create_time" : "2021-12-06T08:00:00.000Z", "push_date" : "2021-12-06T08:00:00.000Z", "update_time" : "2021-12-06T08:00:00.000Z"}
{ "index": {}}
{ "order_no" : 6,"employee":"王五",  "create_time" : "2021-12-06T08:00:00.000Z", "push_date" : "2021-12-06T08:00:00.000Z", "update_time" : "2021-12-06T08:00:00.000Z"}
{ "index": {}}
{ "order_no" : 7,"employee":"王五",  "create_time" : "2021-12-07T00:00:00.000Z", "push_date" : "2021-12-07T00:00:00.000Z", "update_time" : "2021-12-07T00:00:00.000Z"}
{ "index": {}}
{ "order_no" : 8,"employee":"王五",  "create_time" : "2021-12-07T00:00:00.000Z", "push_date" : "2021-12-07T00:00:00.000Z", "update_time" : "2021-12-07T00:00:00.000Z"}

3、查询一下看看

GET /t_test_001/_search
{
  "size": 10
}

结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 8,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "GLztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 1,
          "employee" : "张三",
          "create_time" : "2021-12-06T08:00:00.000Z",
          "push_date" : "2021-12-06T08:00:00.000Z",
          "update_time" : "2021-12-06T08:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "Gbztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 2,
          "employee" : "张三",
          "create_time" : "2021-12-06T08:00:00.000Z",
          "push_date" : "2021-12-06T08:00:00.000Z",
          "update_time" : "2021-12-06T08:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "Grztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 3,
          "employee" : "张三",
          "create_time" : "2021-12-07T00:00:00.000Z",
          "push_date" : "2021-12-07T00:00:00.000Z",
          "update_time" : "2021-12-07T00:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "G7ztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 4,
          "employee" : "张三",
          "create_time" : "2021-12-07T00:00:00.000Z",
          "push_date" : "2021-12-07T00:00:00.000Z",
          "update_time" : "2021-12-07T00:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "HLztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 5,
          "employee" : "王五",
          "create_time" : "2021-12-06T08:00:00.000Z",
          "push_date" : "2021-12-06T08:00:00.000Z",
          "update_time" : "2021-12-06T08:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "Hbztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 6,
          "employee" : "王五",
          "create_time" : "2021-12-06T08:00:00.000Z",
          "push_date" : "2021-12-06T08:00:00.000Z",
          "update_time" : "2021-12-06T08:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "Hrztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 7,
          "employee" : "王五",
          "create_time" : "2021-12-07T00:00:00.000Z",
          "push_date" : "2021-12-07T00:00:00.000Z",
          "update_time" : "2021-12-07T00:00:00.000Z"
        }
      },
      {
        "_index" : "t_test_001",
        "_type" : "_doc",
        "_id" : "H7ztkn0BDKE3xmcewwIG",
        "_score" : 1.0,
        "_source" : {
          "order_no" : 8,
          "employee" : "王五",
          "create_time" : "2021-12-07T00:00:00.000Z",
          "push_date" : "2021-12-07T00:00:00.000Z",
          "update_time" : "2021-12-07T00:00:00.000Z"
        }
      }
    ]
  }
}

4、创建一个transform,将数据按天、业务员  聚合

PUT _transform/t_test_transform
{
  "id": "t_test_transform",
  "source": {
    "index": [
      "t_test_001"
    ]
  },
  "dest": {
    "index": "t_test_x"
  },
  "frequency": "60s",
  "sync": {
    "time": {
      "field": "update_time",
      "delay": "60s"
    }
  },
  "pivot": {
    "group_by": {
      "employee": {
        "terms": {
          "field": "employee"
        }
      },
      "push_date": {
        "date_histogram": {
          "field": "push_date",
          "calendar_interval": "1d"
        }
      }
    },
    "aggregations": {
      "sum_all": {
        "value_count": {
          "field": "_id"
        }
      }
    }
  }
}

5、开启transform

POST _transform/t_test_transform/_start

6、查看transform转换的索引结果

GET /t_test_x/_search
{}

结果:如图,张三2021-12-06和07号各派送两单:

 7、12月7号,订单order_no = 1的单子再次被张三派送;数据被更新

POST /t_test_001/_update/GLztkn0BDKE3xmcewwIG
{
  "doc": {
    "push_date": "2021-12-07T03:27:12.000Z",
    "update_time": "2021-12-07T03:27:12.000Z"
  }
}

注意模拟操作数据的真实性,更新时间在上一个检查点之后!【截图中的检查点时间是北京时间】

8、预期transfrom转换的结果是张三12-6号的派单统计数据由2减少为1;12-7号的派单数据从2增加到3。


9、查询transform转换的索引结果

GET /t_test_x/_search
{}

结果:张三12-6号的派单统计数据为2没有减少,不符合预期;12-7号的派单数据为3,符合预期。

 10,再查询一下原始数据:

GET /t_test_001/_search
{}

11、再统计一下数据:

GET /t_test_001/_search
{
  "size": 0,
  "aggs": {
    "employee": {
      "terms": {
        "field": "employee"
      },
      "aggs": {
        "push_date": {
          "date_histogram": {
            "field": "push_date",
            "calendar_interval": "1d"
          }
        }
      }
    }
  }
}

结果很显然:张三 12-06号派送量为1,12-07号派送量为3!!!而transform统计的结果,此时就错了!!!这个怎么理解呢?是他es的transform不支持这种场景数据变化的聚合,还是说这是一个bug呢?我理解,可能是因为考虑到性能的原因,es的transform在这种场景下是有这种问题的。

 

若有错误之处,望大家指正。谢谢。
【要解决这个问题,可以增加一个状态字段,将之前的派送记录状态修改为已失效,然后通过条件过滤即可解决问题】
-----------------------2022-07-29------------------------
1、经过测试,上述问题无法解决。
2、原因是:当你加一个is_delete 状态,并添加到transform的query查询语句中。看似可以解决,实际并不能解决。
我们可以看到当你生成transform并start启动后,目标索引中的数据确实如你所预期的一样。但是当派件员第二天再次派件后,新纪录生成,昨天的记录的is_delete被修改,我们从transform的preview结果中可以看到数据确实变了,如我们预期的一样;但是,实际在目标索引中已经生成的数据并没有改变。
3、换一个思路,我们直接删除历史数据,相当于mysql的delete,通过debezium我们可以将墓碑事件处理,mysql删除的数据同步到es的同样可以删除。这样,我们继续观察transfrom,发现preview中的数据和我们期望的一致;但是,已经生成的目标索引中的数据并没有和preview中看到的一样,而是之前已经生成的旧值。

4、通过上述2、3的探索,发现。这个问题,暂时没法通过transform解决。就需要从业务方面考虑了:比如重复派件的数据经过筛选新增到一个新的索引中处理。
5、在此,重新查看了官方文档,发现一个 转换保留策略retention_policy,他可以将符合定义标准的数据将从目标索引中删除。他可以应用在:比如一年前的订单无需统计,就可以用这个实现。但,依旧无法解决上述问题。
----------------------
最近使用transfrom实现一个新功能又遇到了如上所述问题:
1、业务:订单销售额和销量的统计折线图,按天、月、年这种,但是注意,需要排除售后订单。售后订单有两种情况,一种是订单可以部分售后(退款),另一种是整单售后(退款)。为了简化,这里统一成整单退款。
2、订单表同步数据到es的mapping

PUT xxx_order
{
  "mappings": {
    "properties": {
      "create_time": {
        "type": "date"
      },
      "create_user": {
        "type": "long"
      },
     "update_time": {
        "type": "date"
       },
       "update_user": {
        "type": "long"
       },
      "id": {
        "type": "long"
      },
      "is_deleted": {
        "type": "long"
      },
      "is_pay": {
        "type": "long"
      },
      "order_amount": {
        "type": "long"
      },
      "order_code": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "order_status": {
        "type": "long"
      },
      "pay_amount": {
        "type": "long"
      },
      "pay_time": {
        "type": "date"
      },
      "pay_type": {
        "type": "long"
      }
    }
  }
}

3、假如业务是:销售额是含售后订单的统计,那就比较简单-----》订单销量统计(含售后订单):

说明:is_pay :1 表示已支付
order_status :9 表示已退款

DELETE xxx_order_paid_summary
#xx商城-每日订单汇总
PUT _transform/xxx_order_daily_paid_summary_transform
{
  "source": {
    "index": [
      "xxx_order"
    ],
    "query": {
      "term": {
        "is_pay": {
          "value": "1"
        }
      }
    }
  },
  "dest": {
    "index": "xxx_daily_order_paid_summary"
  },
  "frequency": "1m",
  "sync": {
    "time": {
      "field": "update_time",
      "delay": "1m"
    }
  },
  "pivot": {
    "group_by": {
      "org_code": {
        "terms": {
          "field": "org_code.keyword"
        }
      },
      "statistic_time": {
        "date_histogram": {
          "field": "pay_time",
          "calendar_interval": "1d",
          "time_zone": "+08:00"
        }
      }
    },
    "aggregations": {
      "pay_amount_sum": {
        "sum": {
          "field": "pay_amount"
        }
      },
      "order_count": {
        "value_count": {
          "field": "order_code.keyword"
        }
      }
    }
  },
  "description": "xx商城-每日订单汇总"
}

POST _transform/xxx_order_daily_paid_summary_transform/_start
POST _transform/xxx_order_daily_paid_summary_transform/_stop

DELETE _transform/xxx_order_daily_paid_summary_transform

其中sync的field可以使用update_time,也可以使用pay_time,都一样。

 "sync": {
    "time": {
      "field": "update_time",
      "delay": "1m"
    }
  }

关于delay参数的解释:当前时间与最近输入数据时间之间的时间延迟。默认值为60s。

4、但是实际业务是统计不包含售后订单---》订单销量统计(不含售后订单):

DELETE xxx_order_paid_summary
#xx商城-每日订单汇总
PUT _transform/xxx_order_daily_paid_summary_transform
{
  "source": {
    "index": [
      "xxx_order"
    ],
    "query": {
      "bool": {
        "filter": [
          {
            "term": {
              "is_pay": 1
            }
          }
        ],
        "must_not": [
          {
            "term": {
              "order_status": {
                "value": "9"
              }
            }
          }
        ]
      }
    }
  },
  "dest": {
    "index": "xxx_daily_order_paid_summary"
  },
  "frequency": "1m",
  "sync": {
    "time": {
      "field": "update_time",
      "delay": "1m"
    }
  },
  "pivot": {
    "group_by": {
      "org_code": {
        "terms": {
          "field": "org_code.keyword"
        }
      },
      "statistic_time": {
        "date_histogram": {
          "field": "pay_time",
          "calendar_interval": "1d",
          "time_zone": "+08:00"
        }
      }
    },
    "aggregations": {
      "pay_amount_sum": {
        "sum": {
          "field": "pay_amount"
        }
      },
      "order_count": {
        "value_count": {
          "field": "order_code.keyword"
        }
      }
    }
  },
  "description": "xx商城-每日订单汇总"
}

POST _transform/xxx_order_daily_paid_summary_transform/_start
POST _transform/xxx_order_daily_paid_summary_transform/_stop

DELETE _transform/xxx_order_daily_paid_summary_transform

5、第二天有发生退款:
发现transform的preview中的结果,确实发生了变化:

 

 

 但是,实际查看目标索引,发现数据并没有变化(测试数据插入,模拟退款数据,我就不详细写了。我在本地搭建的mysql-kafka connect-debezium同步程序,直接在DBeaver插入修改数据的)

POST /xxx_daily_order_paid_summary/_search 
{
"size": 120}

6、那说了这么多,怎么解决这个问题呢,经过我的实践和思考,总结了两种方法:
第一种:直接从order表进行aggs聚合统计。亦可以考虑将统计结果在redis缓存5分钟。这个就需要根据实际情况来看了,一般情况,不加redis完全可以。也不会造成太大压力。除非数据量特别巨大,聚合对es集群在成较大压力,就不能使用直接聚合这种方式了。
第二种:业务中除了order表,还有一张after_sales_order表(售后订单表),此时就可以吧两张表的数据都同步到es,然后分别给两张表各自创建一个transform分别统计,然后在查询的时候,将两个结果再在循环中相减即可得到想要的结果。

posted @ 2021-12-07 13:28  下午喝什么茶  阅读(721)  评论(0编辑  收藏  举报