EOS多节点同步代码分析
EOS version: 1.0.7
一. 配置文件的修改
EOS的节点同步流程是通过p2p来完成,在nodeos的配置文件config.ini中填写,其默认路径为~/.local/share/eosio/nodeos/config目录下,配置项及其格式如下:
p2p-peer-address = 10.186.11.223:9876 121 p2p-peer-address = 10.186.11.220:9876 122 p2p-peer-address = 10.186.11.141:9876
可以填写多个p2p站点地址。
二.节点同步的chain_id
每一个节点都唯一分配一个chain_id,如果两个节点的chian_id不相等的话,是无法进行同步的,代码中处理如下:
void net_plugin_impl::handle_message( connection_ptr c, const handshake_message &msg) { ... if( msg.chain_id != chain_id) { elog( "Peer on a different chain. Closing connection"); c->enqueue( go_away_message(go_away_reason::wrong_chain) ); return; } ... }
那么这个chain_id是如何开成的?
chain_id在chain_plugin中定义,在net_plugin中使用,在chain_plugin中如下定义
//controller.cpp
chain_id( cfg.genesis.compute_chain_id() )
//genesis_state.cpp
chain::chain_id_type genesis_state::compute_chain_id() const {
digest_type::encoder enc;
fc::raw::pack( enc, *this );
return chain_id_type{enc.result()};
}
这里相当于把整个genesis的数据做了一个类似hash的操作,默认情况下genesis的数据在代码中填写:
chain_config initial_configuration = { .max_block_net_usage = config::default_max_block_net_usage, .target_block_net_usage_pct = config::default_target_block_net_usage_pct, .max_transaction_net_usage = config::default_max_transaction_net_usage, .base_per_transaction_net_usage = config::default_base_per_transaction_net_usage, .net_usage_leeway = config::default_net_usage_leeway, .context_free_discount_net_usage_num = config::default_context_free_discount_net_usage_num, .context_free_discount_net_usage_den = config::default_context_free_discount_net_usage_den, .max_block_cpu_usage = config::default_max_block_cpu_usage, .target_block_cpu_usage_pct = config::default_target_block_cpu_usage_pct, .max_transaction_cpu_usage = config::default_max_transaction_cpu_usage, .min_transaction_cpu_usage = config::default_min_transaction_cpu_usage, .max_transaction_lifetime = config::default_max_trx_lifetime, .deferred_trx_expiration_window = config::default_deferred_trx_expiration_window, .max_transaction_delay = config::default_max_trx_delay, .max_inline_action_size = config::default_max_inline_action_size, .max_inline_action_depth = config::default_max_inline_action_depth, .max_authority_depth = config::default_max_auth_depth, };
还可以通过nodeos命令行参数--genesis-json加载一个指定的配置文件genesis.json,其内容一般如下格式:
{ "initial_timestamp": "2018-03-02T12:00:00.000", "initial_key": "EOS8Znrtgwt8TfpmbVpTKvA2oB8Nqey625CLN8bCN3TEbgx86Dsvr", "initial_configuration": { "max_block_net_usage": 1048576, "target_block_net_usage_pct": 1000, "max_transaction_net_usage": 524288, "base_per_transaction_net_usage": 12, "net_usage_leeway": 500, "context_free_discount_net_usage_num": 20, "context_free_discount_net_usage_den": 100, "max_block_cpu_usage": 100000, "target_block_cpu_usage_pct": 500, "max_transaction_cpu_usage": 50000, "min_transaction_cpu_usage": 100, "max_transaction_lifetime": 3600, "deferred_trx_expiration_window": 600, "max_transaction_delay": 3888000, "max_inline_action_size": 4096, "max_inline_action_depth": 4, "max_authority_depth": 6, "max_generated_transaction_count": 16 }, "initial_chain_id": "0000000000000000000000000000000000000000000000000000000000000000" }
所以,节点之间能同步的条件是参数配置需要完全相当的。
四.区块同步数据流
数据同步涉及几个消息:
handshake_message, //hello握手信息,
chain_size_message, //暂未看到使用
go_away_message //停止同步消息
time_message, // 时间戳相关
notice_message, //区块和事务状态同步
request_message, //请求发送区块同步,带有区块的num数据
sync_request_message, //在request_message基础上加了一个定时器做超时处理
signed_block, // 具体的区块数据
packed_transaction //事务同步处理
现在假设有一个节点M,它的p2p-peer-address对就有三个地址a、b、c,现在数据同步的流程基本上有下面几个步骤.
1.handshake_message处理流程
首先,M结点会向a、b、c循环发起连接并发送一条握手信息,这条信息是一个名为struct handshake_message,定义如下:
struct handshake_message { uint16_t network_version = 0; //net version, require M == a == b == c chain_id_type chain_id; // M == a == b == c fc::sha256 node_id; ///< used to identify peers and prevent self-connect chain::public_key_type key; ///< authentication key; may be a producer or peer key, or empty tstamp time; fc::sha256 token; ///< digest of time to prove we own the private key of the key above chain::signature_type sig; ///< signature for the digest string p2p_address; uint32_t last_irreversible_block_num = 0; block_id_type last_irreversible_block_id; uint32_t head_num = 0; block_id_type head_id; string os; string agent; int16_t generation; };
包括了对通信的基本要求的参数,该消息初始化后会将其放入名为write_queue的消息队列中,最后消息是使用asio::async_write进行发送,发送消息的成功与否是通过回调来处理的。
void connection::do_queue_write() { ... while (write_queue.size() > 0) { auto& m = write_queue.front(); bufs.push_back(boost::asio::buffer(*m.buff)); out_queue.push_back(m); write_queue.pop_front(); } boost::asio::async_write(*socket, bufs, [c](boost::system::error_code ec, std::size_t w) { try { for (auto& m: conn->out_queue) { m.callback(ec, w); } while (conn->out_queue.size() > 0) { conn->out_queue.pop_front(); } conn->enqueue_sync_block(); conn->do_queue_write(); } ... }
对端收到handshake_message的消息后处理如下代码:
void sync_manager::recv_handshake (connection_ptr c, const handshake_message &msg) { controller& cc = chain_plug->chain(); uint32_t lib_num = cc.last_irreversible_block_num( ); uint32_t peer_lib = msg.last_irreversible_block_num; reset_lib_num(c); c->syncing = false; //-------------------------------- // sync need checks; (lib == last irreversible block) // // 0. my head block id == peer head id means we are all caugnt up block wise // 1. my head block num < peer lib - start sync locally // 2. my lib > peer head num - send an last_irr_catch_up notice if not the first generation // // 3 my head block num <= peer head block num - update sync state and send a catchup request // 4 my head block num > peer block num ssend a notice catchup if this is not the first generation // //----------------------------- uint32_t head = cc.head_block_num( ); block_id_type head_id = cc.head_block_id(); if (head_id == msg.head_id) { ... } ... }
梳理流程:
- 两个节点历史区块id相等,不进行同步;
- A节点区块的head_block_num小于B节点不可逆区块的head_block_num,则B给A发送消息notice_message,消息中包含A节点所需要同步的区块范围,每次同步块数为sync_req_span,此参数在genesis.json中设置或者是程度初始的;
- A节点不可逆区块的head_block_num大于B节点区块的head_block_num,则A给B发送消息notice_message,消息中包含可逆与不可逆区块的block_num;
- A节点区块的head_block_num小于B节点的head_block_num,A节点会产生一个request_message消息发送给B;
2.go_away_message
一般在某些异常情况下节点A会断开与其它节点的同步,会发送一个go_away_message,会带有一个错误码:
enum go_away_reason { no_reason, ///< no reason to go away self, ///< the connection is to itself duplicate, ///< the connection is redundant wrong_chain, ///< the peer's chain id doesn't match wrong_version, ///< the peer's network version doesn't match forked, ///< the peer's irreversible blocks are different unlinkable, ///< the peer sent a block we couldn't use bad_transaction, ///< the peer sent a transaction that failed verification validation, ///< the peer sent a block that failed validation benign_other, ///< reasons such as a timeout. not fatal but warrant resetting fatal_other, ///< a catch-all for errors we don't have discriminated authentication ///< peer failed authenicatio };
3.time_message
这个消息应该是发送一个带有几个时间标志的keeplive消息包,目前设置的是每32秒发送一次。
4.notice_message
这个消息定义如下:
struct notice_message { notice_message () : known_trx(), known_blocks() {} ordered_txn_ids known_trx; ordered_blk_ids known_blocks; };
它包含了区块的信息和交易信息,也即对可逆区块,可逆事务,不可逆区块,不可逆事务都可以通过这个消息处理。比如,节点A把本地节点最新区块和事务信息(block_num)发送给节点B,节点B收到后会将本地的区块和事务信息(block_num)进行比较,根据比较的结果决定谁给谁传输数据。
5.request_message
A节点请求端分为四种,节点B做为接收端,分别给予的应答如下:
对于区块:
- catch_up:B节点把本地的所有可逆的区块打包发给节点A;
- normal:根据A节点vector里面的区块id,在本地(B节点)不可逆的区块中进行查找,如果找到了就把该区块就发给A;
对于事务:
- catch_up:B节点把A节点所需要的可逆的transaction id 并且自己本地有的数据发送给A;
- normal: B节点把A节点所需要的不可逆的transaction id 并且自己本地有的数据发送给A;
6.sync_request_message
此消息是在request_message实现基础上加了一个5S的定时器,同步消息在5S内没有得到应答会取消当前同步后再重新要求同步;
7.signed_block
这里发送的是具体的区块数据,一般是收到request_message或者 sync_request_message消息后把本节点的区块发给对方;
bool connection::enqueue_sync_block() { controller& cc = app().find_plugin<chain_plugin>()->chain(); if (!peer_requested) return false; uint32_t num = ++peer_requested->last; bool trigger_send = num == peer_requested->start_block; if(num == peer_requested->end_block) { peer_requested.reset(); } try {
//从本地取出区块数据 signed_block_ptr sb = cc.fetch_block_by_number(num); if(sb) {
//放入消息队列并异步发送 enqueue( *sb, trigger_send); return true; } } catch ( ... ) { wlog( "write loop exception" ); } return false; }
8.packed_transaction
节点A把多个transacton放在一起进行打包发送,收到packed_transaction消息的节点会对其进行各种校验,如果校验结果正确,会把数据缓存到本地,然后再对本端所有p2p-peer-address的地址进行广播。所以对于多个transaction的数据,在这里就实现了在多个地址之间相互快速传播的功能。
void net_plugin_impl::handle_message( connection_ptr c, const packed_transaction &msg) { fc_dlog(logger, "got a packed transaction, cancel wait"); peer_ilog(c, "received packed_transaction"); if( sync_master->is_active(c) ) { fc_dlog(logger, "got a txn during sync - dropping"); return; } transaction_id_type tid = msg.id();
//收到数据后取异步定时器 c->cancel_wait(); if(local_txns.get<by_id>().find(tid) != local_txns.end()) { fc_dlog(logger, "got a duplicate transaction - dropping"); return; }
//将数据保存到本地的缓存中 dispatcher->recv_transaction(c, tid); uint64_t code = 0;
//对数据进行校验,然后把结果传递给回调函数 chain_plug->accept_transaction(msg, [=](const static_variant<fc::exception_ptr, transaction_trace_ptr>& result) { if (result.contains<fc::exception_ptr>()) { auto e_ptr = result.get<fc::exception_ptr>(); if (e_ptr->code() != tx_duplicate::code_value && e_ptr->code() != expired_tx_exception::code_value) elog("accept txn threw ${m}",("m",result.get<fc::exception_ptr>()->to_detail_string())); peer_elog(c, "bad packed_transaction : ${m}", ("m",result.get<fc::exception_ptr>()->what())); } else { auto trace = result.get<transaction_trace_ptr>();
if (!trace->except) { fc_dlog(logger, "chain accepted transaction");
//对其它p2p-peer-address进行广播,数据互传 dispatcher->bcast_transaction(msg); return; } peer_elog(c, "bad packed_transaction : ${m}", ("m",trace->except->what())); } //数据校给失败,本地缓存数据回滚 dispatcher->rejected_transaction(tid); }); }