Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

搜城探宝

搜城探宝 (树型dp \star)

  • zhclk 已经坚信自己就是传说中的有缘人,于是,带着梦想,带着希冀,带着勇气,来到了神迹,寻找……

  • 如下图,神迹的城堡是一个树形的结构,共有 n 间屋子。每间屋子都有一把锁,并且每间屋子最多可以到另外的两个屋子里(它是一棵二叉树)。在城堡的每个房间都存在着不同的宝藏。现在 zhclk 站在城堡的大门口(1 号屋子门口)拥有 k 把万能钥匙,可以打开任意一把锁,但每把钥匙只能用一次,钥匙是拔不出来的。

  • 问题哪有那么简单……,Zhclk 还有一个传送门,可以在任何时候带他去任何一间屋子,但传送门也只能 使用一次。

  • 地图上画出了宝藏的分布,只有获得最大价值的宝藏 zhclk 的目的才能实现。

Input

  • 第一行:两个数 nk。为城堡的屋子总数和你拥有的万能钥匙数。
  • 第二行到第 n 行:每行两个数 x_1x_2,为树上的 n-1 条边。(树保证以 1 为根节点)。
  • n+1 行:n 个数,第 i 个数为房间 i 的宝藏价值 v_i

Output

  • 一个数,为最大宝藏价值 maxv

Sample Input

8 4 
1 2 
1 3 
2 4 
2 5 
3 6 
3 7 
6 8 
2 5 1 4 6 1 1 10 

Sample Output

27

Hint

  • 用钥匙依次开1, 2, 4, 5 号房间,再用传送门去 8 号房间,27=2+5+6+4+10
  • 数据范围: n<=20
  • 来源:

分析

  • 题目说白了就是树规,但是题目中的传送门增加了问题的不确定性,所以直接上裸的树规肯定是要爆掉的。记使用传送门从 xy,不难证明有以下结论:
    1. y 仅限于没有访问过的节点,当然更不是 x 的祖先。
    2. 可以将 y 从整棵树中独立出来求 dp 值,并且这样做是正确的。
    3. 可以规定传送到 y 之后不能再往祖先方向走(断掉)。
    4. x 节点使用传送门等效于回到 x 的任意一个祖先之后再使用传送门。因此,可以选择从整棵树的虚根n+1 使用传送门,再令 1n+1 的左儿子,那么整棵树(除去 y )的 dp 值都好计算了。
    5. 既然要把 y 独立出去计算其 dp 值,那么可以令 yn+1 的右儿子。
  • 有了以上结论,问题的解决就变得十分容易了。
    • 首先令 n+1 的左儿子为 1,然后从 2n 枚举 y (也就是被挂出去的节点),把 y 设置为 n+1 的右儿子,对树 n+1 进行一次树形 dp
    • 细节问题:
      • 开虚根的门需要一个钥匙,去 y 需要一个钥匙(但是实际上传送门自带钥匙),因此钥匙数要 +2
  • 复杂度:
    • 枚举 y 需要 O(n) 次,每个点计算一次总共 O(n) 次,每个点的状态转移需要 O(m) 的时间,所以总时间复杂度为O(n^2m)
    • f(i,j) 为树 i 的最大 dp 值,显然空间复杂度为 O(nm)
    • 考虑到 m>n 的情况等同于 m=n 的情况(这是显然的,因为门不够再多钥匙也没什么卵用),故可以认为时间复杂度为 O(n^3),空间复杂度为 O(n^2)

Code

#include <bits/stdc++.h>
const int maxn=20+5;
int n,k,a[maxn],ans=0;
int fa[maxn],ls[maxn],rs[maxn];
int dfs(int x,int sum){
	if(x==0)return 0;//搜完叶子
	if(sum==1)return a[x];//只剩下一把钥匙
	int now=0;
	for(int i=0;i<sum;++i)//树归
		now=std::max(now,dfs(ls[x],i)+dfs(rs[x],sum-1-i)+a[x]);
	return now;
}
void Init(){
	scanf("%d%d",&n,&k);
	for(int i=1;i<n;++i){
		int x,y;scanf("%d%d",&x,&y);
		if(!ls[x])ls[x]=y;
		else rs[x]=y;
		fa[y]=x;
	}
	for(int i=1;i<=n;++i)
		scanf("%d",&a[i]);
}
void Solve(){
	ls[n+1]=1;//虚根,原根作为左儿子
	for(int i=2;i<=n;++i){//枚举其他点,作为右儿子
		rs[n+1]=i;//把i作为右儿子,增加钥匙一把
		if(ls[fa[i]]==i){//i是左儿子
			ls[fa[i]]=0;//先断掉
			ans=std::max(dfs(n+1,k+2),ans);//增加了2把钥匙所以是k+2
			ls[fa[i]]=i;//重新续上
		}
		else{//i是右儿子
			rs[fa[i]]=0;//断掉
			ans=std::max(dfs(n+1,k+2),ans);
			rs[fa[i]]=i;//续上
		}
	}
	printf("%d\n",ans);
}
int main(){
	Init();
	Solve();
	return 0;
}
posted @   ♞老姚♘  阅读(212)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示