The Prices (bzoj4145)

The Prices

 Decscription

  • 你要购买 \(m\) 种物品各一件,一共有 \(n\) 家商店,你到第 \(i\) 家商店的路费为 \(d[i]\),在第 \(i\) 家商店购买第 \(j\) 种物品的费用为 \(c[i][j]\) ,求最小总费用。

Input

  • 第一行包含两个正整数\(n,m(1<=n<=100,1<=m<=16)\),表示商店数和物品数。
  • 接下来\(n\)行,每行第一个正整数\(d[i](1<=d[i]<=1000000)\)表示到第\(i\)家商店的路费,接下来\(m\)个正整数,依次表示\(c[i][j](1<=c[i][j]<=1000000)\)

Output

  • 一个正整数,即最小总费用。

Sample Input

3 4
5 7 3 7 9
2 1 20 3 2
8 1 20 1 1

Sample Output

16
  • 分析

    • \(m\le 16\) ,首先想到状压\(dp\)

    • 定义:\(dp[i][j]\) 表示前 \(i\) 个商店,买东西的状态为 \(j\) 时的最小花费。

    • 和依赖背包类似,具体见代码。

    • Code

      #include <bits/stdc++.h>
      typedef long long LL;
      const int maxn=(1<<16)+5;
      int dp[105][maxn],a[105][20],d[105];
      void Solve(){
      	int n,m;scanf("%d%d",&n,&m);
      	for(int i=1;i<=n;++i){
      		scanf("%d",&d[i]);
      		for(int j=1;j<=m;++j)
      			scanf("%d",&a[i][j]);
      	}
      	memset(dp,0x3f,sizeof(dp));
      	dp[0][0]=0;
      	int Max=1<<m;
      	for(int i=1;i<=n;++i){//枚举每个商家
      		for(int j=0;j<Max;++j)//要想买第i家的商品需先把路费交了
      			dp[i][j]=dp[i-1][j]+d[i];//类似依赖背包,想买第i商家的物品先付路费
      		for(int k=1;k<=m;++k)//枚举第i个商家的m件商品
      			for(int j=0;j<Max;++j)
      				if(~j & (1<<k-1))//想买第k件商品,则前i-1个商家没有买k,所以j的二进制的第k为0
      					dp[i][j | (1<<k-1)]=std::min(dp[i][j | (1<<k-1)],dp[i][j]+a[i][k]);
      		for(int j=0;j<Max;++j)//比较下不买第i个商家的物品和买第i个商家的物品的情况
      			dp[i][j]=std::min(dp[i][j],dp[i-1][j]);
      	}
      	printf("%d\n",dp[n][Max-1]);
      }
      int main(){
      	Solve();
      	return 0;
      }
      
posted @ 2020-06-25 17:41  ♞老姚♘  阅读(184)  评论(0编辑  收藏  举报