十一、图论

11.1 图的基本概念

  • 图是一种网状的数据结构,其中的结点之间的关系是任意的,即图中任何两个结点之间都可能直接相关。

  • 顶点:图中的数据元素。设它的集合用V(Vertex)表示。

  • 顶点之间的关系的集合用E(edge) 来表示:

  • 顶点的度连接顶点数量称为该顶点的度。顶点的度在有向图和无向图中具有不同的表示。

    • 对于无向图,一个顶点V的度比较简单,其是连接该顶点的边的数量,记为D(V)
    • 对于有向图要稍复杂些,根据连接顶点V的边的方向性,一个顶点的度有入度出度之分。
      • 入度是以该顶点为端点的入边数量, 记为ID(V)。
      • 出度是以该顶点为端点的出边数量, 记为OD(V)。
  • 无向图(Undigraph):若图中任意\(<v_1,v_2>\in E\)必能推导出\(<v2,v1> \in E\),此时的图称为无向图

    • 无向图用无序对\((v_1,v_2)\),表示\(v_1\)\(v_2\)之间的一条双向边(Edge)
  • 有向图(Digraph):如果图中 \(v_1,v_2 \in V\),若存在\(<v_1,v_2> \in E\),而 \(<v_2,v_1>\notin E\) 此时的图称为有向图

    • 有向图用有序对\(<v_1,v_2>\),表示\(v_1\)\(v_2\)之间的一条单向边(Edge)
  • 无向完全图:如果在一个无向图中, 任意两个顶点之间都存在一条双向边,那么这种图结构称为无向完全图

    • 理论上可以证明,对于一个包含N个顶点的无向完全图,其总边数为N(N-1)/2
  • 有向完全图:如果在一个有向图中,任意两个顶点之间都存在方向相反两条边,那么这种图结构称为有向完全图。

    • 理论上可以证明,对于一个包含N的顶点的有向完全图,其总的边数为N(N-1)。这是无向完全图的两倍,这个也很好理解,因为每两个顶点之间需要两条边。
  • 有向无环图(DAG图)

    • 如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图。
    • 树型有向图一定是一个有向无环图。
  • 自环和平行边:对于节点与节点之间存在两种边,这两种边相对比较特殊

    • 自环边(self-loop):节点自身的边,自己指向自己

    • 平行边(parallel-edges):两个节点之间存在多个边相连接,也叫重边

  • 简单图 ( Simple Graph)存在自环重边的图叫简单图。

  • 路径、简单路径、回路

    • 路径:无向图中从一个节点到达另一个节点所经过的节点序列

    • 简单路径:路径中的各顶点不重复的路径。

    • 回路:路径上的第一个顶点和最后一个顶点重合,这样的路径叫做回路。

    • 下图箭头表示路径

  • 连通图与连通分量

    • 连通图无向图 G 中,若对任意两点,从顶点 \(V_i\) 到顶点 \(V_j\) 有路径,则称 \(V_i\) 和 $V_j $ 是连通的,图 G 是一连通图。

    • 连通分量无向图 G 连通子图称为 G 的连通分量

      • 任何连通图连通分量只有一个,即其自身,而非连通的无向图有多个连通分量

      • 以下图为例,总共有四个连通分量,分别是:ABCDEFGHI

  • 强连通图与强连通分量

    • 强连通图:有向图 G 中,若对任意两点,从顶点$ V_i$ 到顶点 $V_j $ ,都存在从 $V_i $到 $V_j $ 以及从$ V_j$ 到 \(V_i\) 的路径,则称 G 是强连通图

    • 强连通分量:有向图 G强连通子图称为 G强连通分量

      • 强连通图只有一个强连通分量,即其自身,非强连通的有向图有多个强连通分量。

      • 以下图为例,总共有三个强连通分量,分别是:abefgcdh

11.2 图的存储

11.2.1 邻接矩阵

  • 设图G\(n (n\geq1)\) 个顶点,则邻接矩阵是一个n阶方阵。

  • 当矩阵中的 [i,j] !=0(下标从1开始) ,代表其对应的第i个顶点与第j个顶点是连接的。

  • 邻接矩阵的特点:

    1. 无向图的邻接矩阵是对称矩阵n个顶点的无向图需要n*(n+1)/2个空间大小。
    2. 有向图的邻接矩阵不一定对称n个顶点的有向图需要\(n^2\)的存储空间。
    3. 无向图中第i行的非零元素的个数为顶点\(V_i\)
    4. 有向图中i行的非零元素的个数为顶点 \(V_i\)出度,第i 列的非零元素的个数为顶点 $V_i $ 的入度
    5. 一般情况下,空间复杂度为 \(O(N^2)\)

11.2.2 邻接表(边表)

  • 把数组与链表相结合的存储方法称为邻接表。邻接表为图 G 中的每一个顶点建立一个单链表,每条链表的结点元素为与该顶点连接的顶点
  • 邻接表的处理办法:
    1. 顶点用一个一维指针数组存储(较容易读取顶点信息),作为表头,每个数据元素还需要存储指向第一个邻接点的指针,以便于查找该顶点的边信息(更多情况下,表头不需要保存其他信息,因此可以直接定义一个结点类型的指针数组)。
    2. 每个顶点的所有邻接点构成一个链表。
    3. 空间复杂度为 \(O(V+E)\)\(V\) 表示结点个数,\(E\) 表示边数。
  • 无向图的邻接表结构

    ​ 上图中 data 是数据域,存储顶点 u 的信息;firstedge 是指针域,指向与结点 u 相连的第一个结点,即此顶点的第一个邻接点。

    ​ 边表结点由 adjvexnext 两个域组成。adjvex 是邻接点域,存储某顶点 u 的邻接点在顶点 vnext 则存储指向邻接表中下一个结点的指针,如果不存在下一个结点(即没有边),则指针为 NULL

  • 有向图的邻接表和逆邻接表:

    ​ 有向图由于有方向,我们是以顶点为弧尾来存储邻接表的,这样很容易就可以得到每个顶点的出度。但也有时为了便于确定顶点的入度或以顶点为弧头的弧,我们可以建立一个有向图的逆邻接表,即对每个顶点 u 都建立一个链接为 u 为弧头的表。

  • 对于带权值的网图,可以在边表结点定义中再增加一个weight的数据域,存储权值信息即可。

  • 邻接表创建代码——链表(动态建点):

    /*
     * 向邻接表中添加一条边,从 from 到 to,权值为 w
     * next 为指向与 from 相邻的下一个结点(另一条边)的指针
     */
    struct Edge { // 保存链表中的每个结点
        int from, to, w; // 通常 from 可以不用,因为表头表示了边的起点编号
        Edge* next;
    };
    Edge* head[MAXN]; // 全局变量,定义表头指针数组,大小为结点个数,初始值为 NULL
    
    void AddEdge(int from, int to, int w) {
        Edge* p = new Edge; // 新建一个结点,并将信息进行赋值
        p->from = from;
        p->to = to;
        p->w = w;
        p->next = head[from]; // 先将该结点的 next 指向表头指向的结点
        head[from] = p; // 更改表头的指向,即可将新结点串进来
    }
    
  • 邻接表创建代码——前向星(数组实现):

    /*
     * 向邻接表中添加一条边,从 from 到 to,权值为 w
     * next 为保存与 from 相邻的下一个结点(另一条边)在数组中的位置
     */
    struct Edge { // 保存链表中的每个结点
        int from, to, w; // 通常 from 可以不用,因为表头表示了边的起点编号
        int next;
    };
    int head[MAXN]; // 定义表头指针数组,大小为结点个数,初始值为 -1
    int tot = 0; // 记录总边数,同时也表示新加的边在数组中的下标
    Edge e[MAXM]; // 定义边数组,如果是无向图,大小为给出边数的 2 倍
    
    void AddEdge(int from, int to, int w) {
        e[tot].from = from; // 将信息赋值到 tot 对应的位置
        e[tot].to = to;
        e[tot].w = w;
        e[tot].next = head[from]; // 更新新加结点的 next 指向
        head[from] = tot; // 更新表头的指向
        tot++; // 边数加 1,也作为下一条边的放入的位置
    }
    
  • 邻接表创建代码——vector 实现:

    /*
     * 向邻接表中添加一条边,从 from 到 to,权值为 w
     */
    struct Edge { // 保存链表中的每个结点
        int from, to, w; // 通常 from 可以不用,因为表头表示了边的起点编号
        Edge(){} // 不带参的构造函数
        Edge(int x, int y, int z) { // 带参构造函数,后面使用方便
            from = x; to = y; w = z;
        }
    };
    
    vector<Edge> e[MAXN]; // 定义 vector 数组,大小为结点个数,其中的每一个 vector 模拟一个链表
    void AddEdge(int from, int to, int w) {
        e[from].push_back(Edge(from, to, w)); // 将新结点加入到 from 对应的链表
    }
    
    

注意:如果要保存的图是无向图,则需要双向加边,例如添加一条边 (from, to, w),则需要调用函数 AddEdge(from, to, w); AddEdge(to, from, w); 否则只需要调用一次。

11.2.3 遍历某个结点的邻接点

​ 通常我们需要将与某个结点相邻的所有结点遍历一遍,针对图的不同的存储方式,遍历的方式也不相同。

  1. 邻接矩阵存储的遍历

    // 输出与结点 u 相邻的所有结点,简单明了,不解释
    for (int i = 1; i <= n; ++i) {
        if (g[u][i] != -1) { // 假设我们用 -1 表示 u 与 i 之间没有边
            printf("%d ", i);
        }
    }
    
  2. 邻接表存储的遍历

    ​ 这种存图的方式是我们常用的,所以一定要熟练掌握。根据上面给出的不同的构建方法,给出示例代码来输出 结点 u 的所有邻接点编号。

    • 链表(指针实现):

      // 从表头开始,访问完一个邻接点后,通过 next 调到下一个邻接点
      for (Edge* p = head[u]; p != NULL; p = p->next) {
          printf("%d ", p->to);
      }
      
    • 前向星(数组实现):

      // 从表头开始,访问完一个邻接点后,通过 next 调到下一个邻接点
      for (int i = head[u]; i != -1; i = e[i].next) {
          printf("%d ", e[i].to);
      }
      
    • vector 实现:

      // 从表头开始,访问完一个邻接点后,通过 next 调到下一个邻接点
      int gs = e[u].size();
      for (int i = 0; i < gs; ++i) {
          printf("%d ", e[i].to);
      }
      

11.3 图的遍历

  • 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历
  • 根据遍历路径的不同,通常有两种遍历图的方法:深度优先遍历广度优先遍历

11.3.1 深度优先遍历

  • 深度优先遍历(Depth_First_Search)也称为深度优先搜索,简称为DFS

  • 它是从图中某个顶点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。

  • 对于非连通图,只需要对它的连通分量分别进行深度优先遍历即可。接下来我们以一个示例演示图的深度优先遍历。如下图所示:

    1. 在开始进行遍历之前,我们还要准备一个数组,用来记录已经访问过的元素。其中0代表未访问,1代表已访问,如下所示:

    1. 假设我们是在走迷宫,A是入口,每次都向右手边前进。首先从A走到B,结果如下:

    2. B之后有三个路,我们依然选择最右边,如此下去,直到走到F,如下所示:

    3. 到达F后,如果我们继续按照向右走的原则,就会再次访问A,但A 已访问,则访问另一个邻接点G,如下所示:

    4. 到达G后,可以发现BD都走过了,这时候走到H,如下所示:

    5. 到达H后,H 的邻接点都已访问过了,所以我们从H退回到上层节点G,发现G,F,E 的邻接点全部已经访问过了,直到退回到D时,发现 I 还没走过,于是访问顶点 I,如下所示:

    6. 同理,访问 I 之后,发现与 I 连通的顶点都访问过了,所以再向前回退,直到回到顶点A,发现全部顶点都访问过了,至此遍历完毕。

  • 下面给出的深度优先遍历的参考程序,假设图以邻接表存储(其他情况自己处理即可)

    void dfs(int i) { //邻接表存储图,访问点 i
        visited[i] = true; //标记为已经访问过
        for (Edge* p = head[i]; p != NULL; p = p->next) { // 深度优先遍历 i 的所有邻接点
            if (!visited[p->to]) {
                dfs(p->to);
            }
        }
    }
    // 假设全局变量已经定义好了
    int main() {
        memset(visited, false, sizeof(visited));
        // 如果是有向图,必须用循环才能保证所有的结点都遍历到
        // 如果是连通的无向图,从任一结点开始即可
        for (int i = 1; i <= n; ++i) {
            if (!visited[i]) {
                dfs(i);
            }
        }
        return 0;
    }
    

11.3.2 广度优先搜索

​ 广度优先遍历并不常用,从编程复杂度的角度考虑,通常采用的是深度优先遍历。

​ 深度优先遍历可以认为是纵向遍历图,而广度优先遍历(Breadth_First_Search)则是横向进行遍历。还以上图为例,不过为了方便查看,我们把上图调整为如下样式:

​ 我们依然以 A 为起点,把和 A 邻接的 B 和 F 放在第二层,把和 B、F 邻接的 C、I、G、E 放在第三层,剩下的放在第四层。

​ 广度优先遍历就是从上到下一层一层进行遍历,这和树的层序遍历很像。我们依然借助一个队列来完成遍历过程,因为和树的层序遍历很像,这里只展示结果,如下所示:

​ 广度优先遍历和广搜 BFS 相似,因此使用广度优先遍历一张图并不需要掌握什么新的知识,在原有的广度优先搜索的基础上,做一点小小的修改,就成了广度优先遍历算法。

void bfs(int s) { //邻接表存储图,访问点 s
    queue<int> que;
    visited[s] = true; // 将起点 s 标记并放到队列
    que.push(s);
    
    while (!que.empty()) { // 
        int now = que.front();
        printf("%d ", now);
        for (Edge* p = head[now]; p != NULL; p = p->next) { // 广度优先遍历邻接点
            if (!visited[p->to]) {
                que.push(p->to); // 找到未被访问过的邻接点加入队列,并标记
                visited[p->to] = true;
            }
    	}
    }
}

// 假设全局变量已经定义好了
int main() {
    memset(visited, false, sizeof(visited));
    // 如果是有向图,必须用循环才能保证所有的结点都遍历到
    // 如果是连通的无向图,从任一结点开始即可
    for (int i = 1; i <= n; ++i) {
        if (!visited[i]) {
            bfs(i);
        }
    }
    return 0;
}

11.4 欧拉路

11.4.1 基本概念

  • 如果一个图存在一笔画,则一笔画路径叫做欧拉路,如果最后回到起点,那这个路径叫做欧拉回路
  • 欧拉图存在欧拉回路的图称作欧拉图。
  • 半欧拉图存在欧拉路径不存在欧拉回路的图称作半欧拉图。
  • 欧拉图、半欧拉图的判定
    1. 无向图
      • 奇点:跟这个点相连边数目有奇数个的点。对于能够一笔画的图,我们有以下两个定理。
      • 定理1:无向图 G欧拉图,当且仅当 G连通图,且所有顶点度为偶数,即奇点
      • 定理2:无向图 G半欧拉图,当且仅当 G连通图,且除了两个顶点的度为奇数外,其它顶点度为偶数,即存在两个奇点
      • 半欧拉图的欧拉路径起点必须是一个奇点终点是另一个奇点,欧拉图任一点均可成为起点。
      • 两个定理的正确性是显而易见的,既然每条边都要经过一次,那么对于欧拉路起点和终点外每个点如果进入一次,显然一定要出去一次,显然是偶点
      • 对于欧拉回路,每个点进入出去次数一定都是相等的,显然没有奇点。
    2. 有向图
      • 基图忽略有向图所有方向,得到的无向图称为该有向图的基图。
      • 定理1:有向图 G欧拉图,当且仅当 G基图连通,且所有顶点入度等于出度
      • 定理2:有向图 G半欧拉图,当且仅当 G基图连通,且存在顶点 u入度出度大 1v入度出度小 1 ,其它所有顶点的入度等于出度

11.4.2 Hierholzer 算法

  • 一个无向图如果存在欧拉路经,那么我们如何遍历才能找到一条欧拉路经呢?

  • 假设上图我们其中一种走法是:我们从点 4 开始,一笔划到达了点 5,形成路径 4-5-2-3-6-5。此时我们把这条路径去掉,则剩下三条边,2-4-1-2 可以一笔画出。显然上面走法不是欧拉路

  • 我们用 + 代表入栈,- 代表出栈,把刚才的路经重新描述一下:

    • 4+ 5+ 2+ 3+ 6+ 5+ 5- 6- 3- 1+ 4+ 2+ 2- 4- 1- 2- 5- 4-
    • 把所有出栈的记录连接起来,得到5-6-3-2-4-1-2-5-4
    • 我们把上面的出栈序列倒序输出,正好是一个从 4 开始到 5 结束的一条欧拉回路。
  • 算法实现:

    #include <cstdio>
    #include <cstring>
    const int maxn = 500 + 5,maxe=2*1024+5;//无向图一定注意边数要翻倍
    struct Node{//节点定义
        int to,next;
    }a[maxe];//存储边
    int Head[maxn],len=0;//len记录边数,Head[u]表示以u为起点的边在边表中的编号。
    int Path[maxe],cnt=0;//记录回路的节点,每条边要访问一次所以点数=边数+1
    bool vis[maxe];//记录边是否已访问
    void Insert(int x,int y){//边表的建立x起点,y为终点
        a[len].to=y;a[len].next=Head[x];Head[x]=len++;
    }//要用位运算标记无向图的正反两条边,所以边的编号从0开始。
    void Dfs(int u){//递归的最大深度为边数,当边数较大时容易爆栈,可以改为非递归
        for(int i=Head[u];i!=-1;i=a[i].next){
            if(vis[i])continue;//第i条边已访问
            vis[i]=vis[i^1]=1;//i是i^1的反向边,把这两条边设为已访问
            Head[u]=i;//优化,前面的边已经走过了,没有必要每次从最后一个位置往前找了
            int v=a[i].to;Dfs(v);//从第i条边的终点深搜
            i=Head[u];//优化,有可能v的子树中也更新过了u的共点边
        }
        Path[++cnt]=u;//u回溯时记录路径经过点u
    }
    void Euler(int u){////递归的最大深度为边数,当边数较大时容易爆栈,可以改为非递归
        std::stack<int> q;
        q.push(u);//把起点u进栈
        while(!q.empty()){
            int i,x=q.top();
            for(i=Head[x];i!=-1 && vis[i];i=a[i].next);
            //跳出循环时i==-1或第i条边已访问即vis[i]=1
            if(i==-1){//说明x已不存在未访问的邻接边
                Path[++cnt]=x;q.pop();
            }
            else{//说明第i条未访问
                q.push(a[i].to);//第i条边的去边进栈
                vis[i]=vis[i^1]=1;//标记第i条边及其反向边
                Head[x]=a[i].next;//指向下一条未访问过的邻接边
            }
        }
    }
    void Solve(){
        int m;scanf("%d",&m);
        memset(Head,-1,sizeof(Head));//边的编号从0开始,所以要初始化为-1
        for(int i=1;i<=m;++i){
            int x,y;scanf("%d%d",&x,&y);
            Insert(x,y);Insert(y,x);//无向图要加双向,有向图只加一遍
        }
        Dfs(1);//欧拉图随便一个点都可以作为源点
        for(int i=cnt;i>0;--i)//逆序输出路径
            printf("%d\n",Path[i]);
    }
    int main(){
        Solve();
        return 0;
    }
    

11.5 最短路

  • 最短路径问题是图的又一个比较典型的应用问题。例如,某一地区的一个公路网,给定了该网内的n个城市以及这些城市之间的相通公路的距离,能否找到城市A到城市B之间一条距离最近的通路呢?
  • 如果将城市表示,城市间的公路表示,公路的长度作为值,那么,这个问题就可归结为在网中,求点A到点B的所有路径中边的权值和最短的那一条路径
  • 这条路径就是两点之间的最短路径,并称路径上的第一个顶点源点(Sourse),最后一个顶点终点(Destination)。

11.5.1 迪杰斯特拉(Dijkstra)

  • 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
  • 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
11.5.1.1 算法思路
  • 通过Dijkstra 计算图G中的最短路径时,需要指定起点 s (即从顶点s开始计算)。

  • 引入两个集合(S , U)S 集合包含已求出最短路径(以及相应的最短长度),U 集合包含未求出最短路径的点。

  • 操作步骤:

    1. 初始时,S只包含起点 sU包含除 s 外的其他顶点,且U中顶点的距离为:起点 s 到该顶点的距离(s的邻接点的距离为边权,其他点为∞)
    2. U中选出距离源点 s 最短的顶点 k ,并将顶点 k 加入到 S 中;同时,从U中移除顶点 k
    3. 松弛操作:利用 k 更新U中各个顶点到起点 s 的距离。
    4. 重复步骤 2)3) ,直到遍历完所有顶点。
  • 图解

  • 代码实现

    #include <cstdio>
    #include <cstring>
    const int maxn = 100 + 5,Inf=0x3f3f3f3f;//两个Inf相加不会超int
    int n,a[maxn][maxn],dis[maxn],path[maxn];//dis[i]表示i到源点的最短距离,path[i]记录路径
    void Dijs(int s){//源点s
        bool f[maxn];memset(f,0,sizeof(f));//f[i]表示i到源点s的最短距离已求出
        f[s]=1;//源点进确定集合
        for(int i=1;i<=n;++i){//除邻接点外,其他点离源点距离初始化为Inf
            if(a[s][i]){
                dis[i]=a[s][i];path[i]=s;
            }
            else dis[i]=Inf;
        }
        dis[s]=0;path[s]=s;//源点s到自己的距离为0
        for(int i=1;i<n;++i){//每次能确定一个点到源点的最短路,n-1次能求出所有
            int Min=Inf,k=0;//每次从不在确定集合的点中找出离源点最近的点
            for(int j=1;j<=n;++j){
                if(!f[j] && Min>dis[j]){
                    Min=dis[j];k=j;//k记录最近的点
                }
            }
            f[k]=1;//k到源点距离已确定,进集合
            for(int j=1;j<=n;++j)//经过k进行松弛操作
                if(a[k][j] && dis[j]>dis[k]+a[k][j]){
                    dis[j]=dis[k]+a[k][j];path[j]=k;
                }
        }
    }
    void Solve(){
        int m;scanf("%d%d",&n,&m);//n个顶点,m条边
        for(int i=1;i<=m;++i){
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
            a[x][y]=a[y][x]=z;//x到y的距离为z
        }
        Dijs(4);//节点4为源点
        for(int i=1;i<=n;++i)//输出每个点到源点的最短距离
            printf("%d ",dis[i]);
    }
    int main(){
        Solve();
        eturn 0;
    }
    /*数据为上图样例
    7 12
    1 2 12
    1 6 16
    1 7 14
    2 3 10
    2 6 7
    3 4 3
    3 5 5
    3 6 6
    4 5 4
    5 6 2
    5 7 8
    6 7 9
    */
    
    • 时间效率 \(O(n^2)\) ,n-1 次的松弛必不可少,但需要 O(n) 的时间效率去找最小的边,再用 O(n) 的效率去松弛,对这一部分我们可以用堆进行优化。
11.5.1.2 堆优化的 Dijkstra
  • 对于上一节普通的最短路算法我们可以进行如下优化:

    1. 对于松弛部分,我们可以用邻接表的存储方式进行优化,对一个节点较多的图来说一般来说邻接表的遍历方式是常数的,远远小于 O(n)
    2. 对求集合外的节点到源点的最小值,我们可以建一个小根堆,这样我们时间消耗就是进堆的操作,为 O(ElogE),我们可以用有限队列进行操作。
  • 代码实现

    #include <bits/stdc++.h>
    const int maxn=1000+5,maxe=1e4*2+5;
    struct Node{
        int num,dis;
        Node(){};
        Node(int x,int y){num=x;dis=y;}
        bool operator <(const Node &a)const{//优先队列默认大根堆所以重载
            return dis > a.dis;//小根堆
        }
    };
    struct Edge{//边节点
        int to,dis,next;
    }a[maxe];
    int dis[maxn],Head[maxn],len;//dis[i]表示i到源点的最短距离,Head,len同边表
    void Insert(int x,int y,int z){//边表创建,此处最小边编号为1
        a[++len].to=y;a[len].dis=z;a[len].next=Head[x];Head[x]=len;
    }
    void Dijs(int x){
        std::priority_queue <Node> q;//优先队列,以距离为key的小根堆
        bool f[maxn];memset(f,0,sizeof(f));//f[i]标记是否在确认集合
        memset(dis,0x3f,sizeof(dis));//初始化其他节点到源点的最小距离为无穷大
        dis[x]=0;//源点到自己的距离为0
        q.push(Node(x,0));//源点进队
        while(!q.empty()){//队列非空说明还有点可以松弛
            Node t=q.top();q.pop();//取出堆顶的点并出堆,必然到源点的距离最小
            int k=t.num;
            if(f[k])continue;//如果k到源点的最短路已经求出,说明其邻接点已经松弛
            f[k]=1;//k点进确定集合
            for(int i=Head[k];i;i=a[i].next){//以k为中间点松弛k的邻接点
                int y=a[i].to,d;
                if(dis[y]>(d=dis[k]+a[i].dis)){
                    dis[y]=d;q.push(Node(y,d));//松弛成功k的邻接点y进堆
                }
            }
        }
    }
    void Solve(){
        int m,n;scanf("%d%d",&n,&m);
        for(int i=1;i<=m;++i){
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
            Insert(x,y,z);Insert(y,x,z);//无向图
        }
        Dijs(4);
        for(int i=1;i<=n;++i)
            printf("%d ",dis[i]);
    }
    int main(){
        Solve();
        return 0;
    }
    
  • 迪杰斯拉算法的核心思想是贪心,此贪心思想是建立在权值为正的基础上,所以此算法无法解决权值为负的问题。

11.5.2 Bellman-Ford 算法

  • 算法的基本思路:以任意顺序考虑图的边,沿着各条边进行松弛操作,重复操作 V 次( V 表示图中顶点的个数)。

  • 对有向带权图G = (V, E),从顶点 s 起始,利用 Bellman-Ford 算法求解各顶点最短距离,算法描述如下:

    for(i = 0;i < V;i++)
        for each edge(u,v) ∈ E //对每一条边
            Relax(u,v);//松弛操作
    
    • 算法对每条边做松弛操作,并且重复 V 次,所以算法可以在于O(V*E)成正比的时间内解决单源最短路径问题。
  • 代码实现:

    #include <bits/stdc++.h>
    const int maxn = 10000 + 5,maxe=1e5 + 5;
    struct Node{
        int from,to,dis;//不需要边表,注意跟边表的区别
    }a[2*maxe];//无向图
    int d[maxn];//d[i]表示i到源点的最短距离
    int m,n,len=0;
    void Insert(int x,int y,int z){//建边
        a[++len].from=x;a[len].to=y;a[len].dis=z;
    }
    bool Check(){//对所有边再做一次松弛,如果成功返回1
        for(int i=1;i<=len;++i){//遍历每条边
            int x=a[i].from,y=a[i].to,z=a[i].dis;
            if(d[y]>d[x]+z)return 1;//松弛成功
        }
        return 0;
    }
    void Bellman_ford(int u){
        memset(d,0x3f,sizeof(d));//初始化其他点到源点的最短距离为无穷大
        d[u]=0;//源点到自己的最短距离为0
        for(int i=1;i<n;++i){//对每条边做n-1次松弛
            for(int j=1;j<=len;++j){//遍历每条边
                int x=a[j].from,y=a[j].to,z=a[j].dis;
                d[y]=std::min(d[y],d[x]+z);//松弛操作
            }
        }
    }
    void Solve(){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;++i){
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
            Insert(x,y,z);Insert(y,x,z);
        }
        Bellman_ford(4);
        if(Check()){//松弛完n-1次后如果还能松弛成功说明有负环回路
            printf("NO\n");return;
        }//无法松弛说明不存在负权回路
        for(int i=1;i<=n;++i)
            printf("%d ",d[i]);
    }
    int main(){
        Solve();
        return 0;
    }
    
  • Dijkstra 算法和 Bellman-ford 算法的区别:

    1. Dijkstra 算法在求解的过程中,源点到集合 S 内各顶点的最短路径一旦求出,则之后就不变了,修改的仅仅是源点到未确定最短距离的集合 T 中各顶点的最短路路径长度。
    2. Bellman-ford 算法在求解过程中,源点到各顶点的最短距离知道算法结束才能确定下来。
    3. Bellman-ford 能解决负权问题,也可以判断图中是否存在负环,而Dijkstra 只能解决权值为正的问题。

11.5.3 spfa算法

  • spfa 可以看成是 Bellman-ford 的队列优化版本。

  • Bellman 每一轮用所有边来进行松弛操作可以多确定一个点的最短路径,但是用每次都把所有边拿来松弛太浪费了。

  • 只有那些松弛成功的点才有可能松弛它的邻接点,所以我们可以用一个队列记录松弛成功点的,依次用这些点去松弛邻接点。

  • 代码实现:

#include <bits/stdc++.h>
const int maxn = 10000 + 5,maxe=1e5 + 5;
struct Node{
    int to,dis,next;
}a[maxe];
int d[maxn],head[maxn];//d[i]表示i到源点的最短距离
int m,n,len=0,cnt[maxn];//cnt[i]记录节点i进队次数
bool inq[maxn];//inq[i]=0表示节点i在队列
void Insert(int x,int y,int z){
    a[++len].to=y;a[len].dis=z;a[len].next=head[x];head[x]=len;
}
bool spfa(int s){//返回0表示不存在最短路,即有负环
    memset(d,0x3f,sizeof(d));d[s]=0;//除了源点,其他点到源点最短距离为无穷
    std::queue<int>q;q.push(s);inq[s]=1;//源点入队
    while(!q.empty()){
        int u=q.front();q.pop();//取出队首,并出队
        inq[u]=0;//顶点可以反复入队,所以出队后要把标记设为0
        for(int i=head[u];i;i=a[i].next){
            int v=a[i].to,dis;
            if(d[v]>(dis=d[u]+a[i].dis)){//松弛成功
                d[v]=dis;
                if(!inq[v]){//节点v不在队列中
                    if(++cnt[v]>=n)return 0;//一个点被松弛n次,肯定有负环
                    q.push(v);inq[v]=1;
                }
            }
        }
    }
    return 1;
}
void Solve(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;++i){
        int x,y,z;scanf("%d%d%d",&x,&y,&z);
        Insert(x,y,z);Insert(y,x,z);
    }
    if(!spfa(4)){
        printf("NO\n");return;
    }
    for(int i=1;i<=n;++i)
        printf("%d ",d[i]);
    }
int main(){
    Solve();
    return 0;
}
  • spfa 算法对随机数据效果很好,甚至比堆优化的dijkstra 还要快。但如果在处理非负权的最短路时不建议使用spfa容易被卡。
  • spfa 有一般有三种简单的优化,这三种优化都是把队列换成双端队列,但都容易被正对性数据卡掉,
    1. LLL 优化:每次将入队结点距离和队内距离平均值比较,如果更大则插入至队尾,否则插入队首
      • Hack :向 1 连接一条权值巨大的边,这样 LLL 就失效了。
    2. SLF 优化:每次将入队结点距离和队首比较,如果更大则插入至队尾,否则插入队首
      • Hack:使用链套菊花的方法,在链上用几个并列在一起的小边权边就能欺骗算法多次进入菊花。
    3. SLF 带容错:每次将入队结点距离和队首比较,如果比队首大超过一定值则插入至队尾,否则插入队首
      • 卡法是卡 SLF 的做法,并开大边权,权值总和最好超过 \(10^{12}\)

11.5.4 Floyd 算法

  • Floyd算法 (Floyd-Warshall algorithm) 又称为弗洛伊德算法、插点法,是解决给定的加权图中顶点间的最短路径的一种算法。

  • 该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

  • 适用范围:无负权回路即可,边权可正可负,运行一次算法即可求得任意两点间最短路。

  • 问题模型

    • 某个国家有n 个城市,这 n 个城市间有 m 条公路相连 ,第 i 条公路长度为 \(a_i\) 。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

    • 上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。

    • Floyd 算法的数据的存储,我们一般用邻接矩阵,即一个二维数组来存储。

    • 算法分析:

      • 如果要让任意两点 (例如从顶点A 点到顶点B) 之间的路程变短,只能引入第三个点 (顶点K) ,并通过这个顶点 K 中转即 A-> K -> B,才可能缩短其距离。

      • 假如现在只允许经过1号顶点,即 K=1 来中转,求任意两点之间的最短路程,我们只需判断节点1是否能松弛当前边即可。

        //核心代码
        for(int i=1;i<=n;++i)//枚举边的起点
            for(int j=1;j<=n;++j)//枚举边的终点
                if(a[i][j]>a[i][1]+a[1][j])//如果1能松弛边i->j
                    a[i][j]=a[i][1]+a[1][j];
        
      • 通过节点1 松弛后结果如下图所示。

      • 接下来继续求在只允许经过12号两个顶点的情况下任意两点之间的最短路程。

        //经过1号顶点
        for(int i=1;i<=n;++i)//枚举边的起点
            for(int j=1;j<=n;++j)//枚举边的终点
                if(a[i][j]>a[i][1]+a[1][j])//如果1能松弛边i->j
                    a[i][j]=a[i][1]+a[1][j];
        //经过2号顶点
        for(int i=1;i<=n;++i)//枚举边的起点
            for(int j=1;j<=n;++j)//枚举边的终点
                if(a[i][j]>a[i][2]+a[2][j])//如果2能松弛边i->j
                    a[i][j]=a[i][2]+a[2][j];
        

      • 依此类推,我们只要依次枚举中转点即可。

        for(int k=1;k<=n;++k)//枚举中转点
            for(int i=1;i<=n;++i)//枚举边的起点
                for(int j=1;j<=n;++j)//枚举边的终点
                    if(a[i][j]>a[i][k]+a[k][j])//松弛操作
                        a[i][j]=a[i][k]+a[k][j];
        
    • 时间效率\(O(n^3)\)

posted @ 2020-01-24 15:11  ♞老姚♘  阅读(1973)  评论(4编辑  收藏  举报