各类数据集/模型之间的转换
datasets:
1.voc转tfrecords:
-
step1. 准备数据集,参见labelImg工具
-
step2.下载工具raccoon_dataset[https://github.com/datitran/raccoon_dataset]并分配好数据集
-
step3. 运行脚本xml_to_csv.py
得到csv -
step4. 运行脚本generate_tfrecord.py
得到tfrecord. 我在本地运行时候git上直接取下来的脚本运行报错,改为以下代码调试通过,可以试一下:
"""
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record
# Create test data:
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record
"""
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from utils import dataset_util
from collections import namedtuple, OrderedDict
# os.chdir('./images/test')
flags = tf.app.flags
flags.DEFINE_string('csv_input','/mnt/c/NXP/mobileNetv2_SSD/models-master/research/object_detection/labels_test.csv','Path to the CSV input')
flags.DEFINE_string('output_path','/mnt/c/NXP/mobileNetv2_SSD/models-master/research/object_detection/test.record','Path to output TFRecord')
#flags.DEFINE_string('image_dir','C:\\NXP\\mobileNetv2_SSD\\models-master//research//object_detection//images//train_val//', 'Path to images')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):
if row_label == 'tcorner': # 需改动为自己的分类
return 1
if row_label == 'corner':
return 2
if row_label == 'crosscorner':
return 3
else:
None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
encoded_jpg = tf.gfile.FastGFile(os.path.join(path, '{}'.format(group.filename)), 'rb').read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main():
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
# path = os.path.join(os.getcwd(), 'test') # 有问题,此处用绝对地址出错,用相对
#地址正确,网友可以测试下,有其他答案可留言
path='/mnt/c/NXP/mobileNetv2_SSD/models-master/research/object_detection/images/test/' #图片所在文件夹
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
main()