pwn——IO_FILE学习(一)

IO_FILE学习(一)

2020-08-22 14:01:55 hawk


  因为参加的2020年全国大学生信息安全竞赛创新实践赛时,因为自己十分的菜,pwn题仅仅痛苦的做出了几道。之后学校大佬分享了一下他们的wp,仔细查看部分题目的wp,解法涉及到了之前的盲区——IO_FILE(比如其中的一道题,我傻乎乎的将strdup的got表转换为printf的plt地址,然后再leak对应的调用strdup的函数栈的基址,最后使用格式化字符串漏洞leak程序的libc基址并修改strdup为system,太笨了。。;而当后面出现了FULL RELRO和PIE保护机制时,这个方法就失效了,我也就不会了。。。),因此这里特点学习一下IO_FILE相关的知识,填补一下知识短板。


IO_FILE概述

  众所周知,Linux将一切都当作文件进行操作,因此实际上,对于程序的IO来说,也是如此。而顾名思义,IO_FILE就是和描述IO的文件结构体,我们首先查看一下相关的源代码(我的是glibc2.23,不同版本内容可能会有一定差别),其中IO_FILE相关的源代码位于glibc源代码的libio/libioP.h文件中,如下所示

/* We always allocate an extra word following an _IO_FILE.
   This contains a pointer to the function jump table used.
   This is for compatibility with C++ streambuf; the word can
   be used to smash to a pointer to a virtual function table. */

struct _IO_FILE_plus
{
  _IO_FILE file;
  const struct _IO_jump_t *vtable;
};

 

  实际上我们最终描述文件流文件的数据结构是_IO_FILE_plus,其中有_IO_FILE结构体和常量_IO_jump_t(内容不可被修改),而根据成员的名称,我们大概可以推测出不同成员的作用——file成员应该包含的是该文件的一些关键数据;而vtable,也就是virtual table,虚表,即各种操作函数的指针。

  下面我们再分别查看一个各自成员的组成,首先是_IO_FILE,其源代码位于libio/libio.h文件中,如下所示

struct _IO_FILE {
  int _flags;        /* High-order word is _IO_MAGIC; rest is flags. */
#define _IO_file_flags _flags

  /* The following pointers correspond to the C++ streambuf protocol. */
  /* Note:  Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
  char* _IO_read_ptr;    /* Current read pointer */
  char* _IO_read_end;    /* End of get area. */
  char* _IO_read_base;    /* Start of putback+get area. */
  char* _IO_write_base;    /* Start of put area. */
  char* _IO_write_ptr;    /* Current put pointer. */
  char* _IO_write_end;    /* End of put area. */
  char* _IO_buf_base;    /* Start of reserve area. */
  char* _IO_buf_end;    /* End of reserve area. */
  /* The following fields are used to support backing up and undo. */
  char *_IO_save_base; /* Pointer to start of non-current get area. */
  char *_IO_backup_base;  /* Pointer to first valid character of backup area */
  char *_IO_save_end; /* Pointer to end of non-current get area. */

  struct _IO_marker *_markers;

  struct _IO_FILE *_chain;

  int _fileno;
#if 0
  int _blksize;
#else
  int _flags2;
#endif
  _IO_off_t _old_offset; /* This used to be _offset but it's too small.  */

#define __HAVE_COLUMN /* temporary */
  /* 1+column number of pbase(); 0 is unknown. */
  unsigned short _cur_column;
  signed char _vtable_offset;
  char _shortbuf[1];

  /*  char* _save_gptr;  char* _save_egptr; */

  _IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};

struct _IO_FILE_complete
{
  struct _IO_FILE _file;
#endif
#if defined _G_IO_IO_FILE_VERSION && _G_IO_IO_FILE_VERSION == 0x20001
  _IO_off64_t _offset;
# if defined _LIBC || defined _GLIBCPP_USE_WCHAR_T
  /* Wide character stream stuff.  */
  struct _IO_codecvt *_codecvt;
  struct _IO_wide_data *_wide_data;
  struct _IO_FILE *_freeres_list;
  void *_freeres_buf;
# else
  void *__pad1;
  void *__pad2;
  void *__pad3;
  void *__pad4;
# endif
  size_t __pad5;
  int _mode;
  /* Make sure we don't get into trouble again.  */
  char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)];
#endif
};

 

  该数据结构大概如此,其他大小通过输出sizeof可以判断(64/0xd8, 32/0x94)。我们根据源代码中的注释,就很容易注意到中间的那些指针应该就和输入、输出数据有相当大的关系了。这些我们会在后面在进行分析。

  下面我们再介绍一下_IO_FILE_plus的另一个重要的成员结构,即_IO_jump_t结构,其源代码位于libio/libioP.h文件中,如下所示


#define JUMP_FIELD(TYPE, NAME) TYPE NAME
struct _IO_jump_t
{
    JUMP_FIELD(size_t, __dummy);
    JUMP_FIELD(size_t, __dummy2);
    JUMP_FIELD(_IO_finish_t, __finish);
    JUMP_FIELD(_IO_overflow_t, __overflow);
    JUMP_FIELD(_IO_underflow_t, __underflow);
    JUMP_FIELD(_IO_underflow_t, __uflow);
    JUMP_FIELD(_IO_pbackfail_t, __pbackfail);
    /* showmany */
    JUMP_FIELD(_IO_xsputn_t, __xsputn);
    JUMP_FIELD(_IO_xsgetn_t, __xsgetn);
    JUMP_FIELD(_IO_seekoff_t, __seekoff);
    JUMP_FIELD(_IO_seekpos_t, __seekpos);
    JUMP_FIELD(_IO_setbuf_t, __setbuf);
    JUMP_FIELD(_IO_sync_t, __sync);
    JUMP_FIELD(_IO_doallocate_t, __doallocate);
    JUMP_FIELD(_IO_read_t, __read);
    JUMP_FIELD(_IO_write_t, __write);
    JUMP_FIELD(_IO_seek_t, __seek);
    JUMP_FIELD(_IO_close_t, __close);
    JUMP_FIELD(_IO_stat_t, __stat);
    JUMP_FIELD(_IO_showmanyc_t, __showmanyc);
    JUMP_FIELD(_IO_imbue_t, __imbue);
#if 0
    get_column;
    set_column;
#endif
};

 

  我们简单列出来对应的数据的索引,方便之后进行查询,如下所示

0,size_t, __dummy
1,size_t, __dummy2
2,_IO_finish_t, __finish
3,_IO_overflow_t, __overflow
4,_IO_underflow_t, __underflow
5,_IO_underflow_t, __uflow
6,_IO_pbackfail_t, __pbackfail
7,_IO_xsputn_t, __xsputn
8,_IO_xsgetn_t, __xsgetn
9,_IO_seekoff_t, __seekoff
10,_IO_seekpos_t, __seekpos
11,_IO_setbuf_t, __setbuf
12,_IO_sync_t, __sync
13,_IO_doallocate_t, __doallocate
14,_IO_read_t, __read
15,_IO_write_t, __write
16,_IO_seek_t, __seek
17,_IO_close_t, __close
18,_IO_stat_t, __stat
19,_IO_showmanyc_t, __showmanyc
20,_IO_imbue_t, __imbue

 

  而我们在程序中经常会听到如下一些关键字stdin、stdout等,实际上其也就是上面提到的结构,如下所示

extern struct _IO_FILE_plus _IO_2_1_stdin_;
extern struct _IO_FILE_plus _IO_2_1_stdout_;
extern struct _IO_FILE_plus _IO_2_1_stderr_;

 

  可以看到,实际上我们所说的stdin、stdout以及stderr等,都是IO_FILE数据结构进行组织的。这样子,我们就基本完成了IO_FILE相关知识的总体概括。而实际上单纯对于IO_FILE结构来说,很难展开去讲——因为涉及的方面过多,但是我们在ctf比赛或者利用的时候,并不需要那么多,因此下面我将结合功能进行讲解。


puts分析

  这里我们首先结合puts函数(往往可以用来leak地址),puts函数是由_IO_puts实现的(网络资料),而_IO_puts的功能主要会调用_IO_sputn,而_IO_sputn是_IO_new_file_xsputn的包装。当然这中间的分析极其复杂,我尝试从头到尾分析一遍,最后放弃了,因为过于庞大。但就我有限的尝试来看,实际上前者都是对后者的一些包装,也就是通过各种情况的判断,从而提高对于后者的调用效率,因此我们只需要直接对于最后的_IO_new_file_overflow函数进行分析即可。_IO_new_file_xsputn位于libio/fileops.c文件中,因为代码过长,我这里放置一个经过优化的源代码,如下所示

_IO_size_t
_IO_new_file_xsputn (_IO_FILE *f, const void *data, _IO_size_t n)
{
  const char *s = (const char *) data;
  _IO_size_t to_do = n;
  int must_flush = 0;
  _IO_size_t count = 0;

  if (n <= 0)
    return 0;
  /* This is an optimized implementation.
     If the amount to be written straddles a block boundary
     (or the filebuf is unbuffered), use sys_write directly. */

  /* First figure out how much space is available in the buffer. */
  if ((f->_flags & _IO_LINE_BUF) && (f->_flags & _IO_CURRENTLY_PUTTING))
         ...
    }
  else if (f->_IO_write_end > f->_IO_write_ptr)
    count = f->_IO_write_end - f->_IO_write_ptr; /* Space available. */

/* Then fill the buffer. */ if (count > 0) { if (count > to_do) count = to_do; #ifdef _LIBC f->_IO_write_ptr = __mempcpy (f->_IO_write_ptr, s, count); #else memcpy (f->_IO_write_ptr, s, count); f->_IO_write_ptr += count; #endif s += count; to_do -= count; }
if (to_do + must_flush > 0) { _IO_size_t block_size, do_write; /* Next flush the (full) buffer. */ if (_IO_OVERFLOW (f, EOF) == EOF) /* If nothing else has to be written we must not signal the caller that everything has been written. */ return to_do == 0 ? EOF : n - to_do; /* Try to maintain alignment: write a whole number of blocks. */ block_size = f->_IO_buf_end - f->_IO_buf_base; do_write = to_do - (block_size >= 128 ? to_do % block_size : 0); if (do_write) { count = new_do_write (f, s, do_write); to_do -= count; if (count < do_write) return n - to_do; } /* Now write out the remainder. Normally, this will fit in the buffer, but it's somewhat messier for line-buffered files, so we let _IO_default_xsputn handle the general case. */ if (to_do) to_do -= _IO_default_xsputn (f, s+do_write, to_do); } return n - to_do; }

  

  实际上我们可以根据源代码中的注释,大体了解程序的流程——首先根据情况获取可用空间大小,然后将字符串复制到_IO_write_ptr所指向的地址处,最后使用_IO_OVERFLOW、new_do_write等进行刷新即可。而实际上_IO_OVERFLOW是对于_IO_new_file_overflow函数的包装,最后仍然引用到了new_do_write,这里我放置一下其他博主https://n0va-scy.github.io/2019/09/21/IO_FILE/优化过的代码,如下所示

int 
_IO_new_file_overflow (_IO_FILE *f, int ch) 
{  
    if (f->_flags & _IO_NO_WRITES) /* SET ERROR */    
    {
    ...     
    }  
    /* If currently reading or no buffer allocated. */  
    if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0 || f->_IO_write_base == NULL){ 
    ...
        }  
    if (ch == EOF)    
        return _IO_do_write (f, f->_IO_write_base, 
                             f->_IO_write_ptr - f->_IO_write_base); //进入目标  
    if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */    
        if (_IO_do_flush (f) == EOF)      
            return EOF;  
     *f->_IO_write_ptr++ = ch;  
     if ((f->_flags & _IO_UNBUFFERED)      
         || ((f->_flags & _IO_LINE_BUF) && ch == '\n'))    
        if (_IO_do_write (f, f->_IO_write_base,             
                          f->_IO_write_ptr - f->_IO_write_base) == EOF) 
            return EOF;  
      return (unsigned char) ch; 
}   

 

  可以看出来,其会有两个判断,判断成功执行的代码都是设置错误并退出,我们在执行时需要绕过,其中对应的标志位宏定义位于libio/libio.h中,可以具体查看。可以看到,最后都可以归纳为对于_IO_do_write的调用,而_IO_do_write实际上又是new_do_write的包装,同样位于libio/fileops.c文件中,同样借鉴一下上面博主整理的代码,方便阅读,如下所示

static
_IO_size_t
new_do_write (_IO_FILE *fp, const char *data, _IO_size_t to_do)
{
  ...
  _IO_size_t count;
  if (fp->_flags & _IO_IS_APPENDING)
    fp->_offset = _IO_pos_BAD;
  else if (fp->_IO_read_end != fp->_IO_write_base)
    {
      _IO_off64_t new_pos
    = _IO_SYSSEEK (fp, fp->_IO_write_base - fp->_IO_read_end, 1);
      if (new_pos == _IO_pos_BAD)
    return 0;
      fp->_offset = new_pos;
    }
  // 调用函数输出输出缓冲区
  count = _IO_SYSWRITE (fp, data, to_do); //最终输出 
  ...

  return count;
}

 

  同样类似于_IO_new_file_overflow,而我们想要的及时调用的_IO_SYSWRITE,中间的变化到会导致一些不可控的因素,因此我们需要让两个判断都不成立即可。如果我们要让第二个不成立,根据网络资料,程序可能会崩溃,因此我们选择进入第一个判断,也就是让fp->offset & _IO_IS_APPENDING !=0即可。最后总结即可知,实际上打印的数据地址是fp->_IO_write_base,并且f->_flags需要满足如下条件

f->_flags必须包含魔数(结构体注释)
f->_flags & _IO_NO_WRITES = 0 f->_flags & _IO_CURRENTLY_PUTTING != 0 f->_flags & _IO_IS_APPENDING != 0

 

  其各个宏常量定义在libio/libio.h文件中,最后我们可以得出f->_flags字段的值

#define _IO_MAGIC 0xFBAD0000 /* Magic number *
#define _IO_NO_WRITES 8 /* Writing not allowd */
#define _IO_CURRENTLY_PUTTING 0x800
#define _IO_IS_APPENDING 0x1000

f->_flags = (~_IO_NO_WRITES) | (_IO_CURRENTLY_PUTTING) | (_IO_IS_APPENDIGN) =0xfbad0000 | 0x800 | 0x1000 & (0xfffffff7) = 0xfbad1800

  因此,如果我们修改了stdout的flags和_IO_write_base成员,并且将_IO_write_base减小,则根据上面源代码易知,我们将输出_IO_write_base地址,长度为_IO_write_ptr-_IO_write_base个字节的信息,从而会输出多一些的相关信息,这中间很容易包含glibc地址。

  下面说一下常用的地址泄露用法——如果我们要泄露地址,则一定需要要输出函数,这里就是puts函数,因此我们需要修改stdout对应的IO_FILE结构,也就是我们需要修改stdout的flags和_IO_write_base结构,从而获取glibc的地址。那么我们通常会在stdout地址附近,构造一个fake chunk并分配,从而可以修改stdout对应的结构体,完成地址泄露。

  我们首先gdb观察一下stdout附近有没有现成的fake chunk,从而方便进行分配,如下所示

 

 

 

  可以看到,貌似在0x7ffff7dd25e0(具体地址根据实际调试情况而定)处可以有伪造的chunk,这里看起来不太方便,我们更换成熟悉的chunk,如下所示

 

 

 

  这样子的话,就非常像一个chunk了,也不用担心万一不同电脑不一样怎么办,因为实际上这里是固定存在的(具体数值可能不太一样而已)。除此之外,我们注意到该fake chunk的大小字段的值为0x7f,这并不是一个很理想的值——因为一般chunk分配比较大小的时候,不考虑第三位,都是0x10对齐的(64位),因此这样的话我们不能通过一般unsorted bin进行分配(否则malloc内部比较大小时会不一样),因此我们不妨通过fast bin类型进行分配,因为fast bin比较大小是通过idx,即自动忽略了最后四位,因此这实际上0x7ffff7dd25dd是一个合法的fast bin。

  下面的问题就在于如何通过malloc分配到这个fake chunk。一般我们通过修改fast bin的fd字段为该fake chunk的地址,从而获取该fake chunk。但问题就在于我们不知道这个fake chunk的地址,因此我们没有办法直接修改fd字段的值来进行分配。一般遇到这种问题,我们的思路都是通过相对偏移进行解决——如果我们能获取到这个fake chunk附近的地址,我们通过覆盖后几位,从而添加了相对偏移,从而将fd字段的值修正为该chunk即可。实际上,获取该fake chunk周边的地址是非常容易得,因为该fake chunk周边即是main_arena,如图所示

 

 

 

  可以看到,实际上仅仅后16比特不同。而虽然main_arena、fake chunk的地址都是变化的,但是根据计算机独有的特性,其内存按照页分配,一个页大小一般是1k,也就是后12比特是固定不变的,因此往往我们只需要爆破一些部分,即可将main_arena的值变换为fake chunk对应的地址。

  那么现在的问题重新变换为了如果在fast bin的fd字段获取main_arena周边的地址,实际上这个就是house of Romanhttps://ctf-wiki.github.io/ctf-wiki/pwn/linux/glibc-heap/house_of_roman-zh/的攻击,这里我简单画图进行示意,方便进行理解。其大体思路如下所示

  首先我们申请一个比较大的chunk,确保其释放的时候可以释放到unsorted bin中去,因为根据unsoretd bin的规则,其fd和bk的值就是main_arena附近的值。

 

 

 

  然后我们将其释放,确保其释放到unsoretd bin中,而非和top chunk融合,此时其fd字段应该已经为main_arena + 88,这个偏移是固定的,不理解的可以阅读一下malloc分配机制。当然,这个便宜只要不是特别大,是多少都无所谓,因为我们会覆盖掉。结果如下所示

 

 

 

  然后我们重新申请相同大小的chunk,这里根据malloc的分配机制,实际上获取的一定是刚刚释放掉的chunk,也就是除了该chunk的fd、bk字段的值进行了修改,其余基本没有什么变化,如图所示

 

 

 

  此时,这里需要通过特殊的一些方法(可以是Off By One,可以是UAF等手段)对该chunk进行修改,从而使其成为大小为0x71的free过的fake chunk,并且其fd指向我们想要的stdout附近的那个fake chunk,这样子我们相当于构造了一个假的fast bin链,如果我们将其链接到真的fast bin链上,则基本完成了目标,从而可以修改stdout的结构。如图所示

 

 

 

 

 

  最后我们就是将其链接到真的fast bin上,一般我们通过在创建两个chunk,并且使其连接关系如下,如图所示

 

 

  即address C处的chunk->address B处的chunk,一般address A、address B和address C是物理连续的chunk,因此如果我们同样使用一些特殊方法(Off By One、UAF等)技术覆盖掉address C的fd的后几个字节,从而使其指向address A,这样子我们就完成分配一个chunk在stdout附近,从而覆盖掉stdout的成员,完成地址leak。如图所示

 

  最后,假如我们已经成功完成了这些,剩下就是单纯的泄露了,这里给出一下填充的内容模板,如下所示

def leak(addr):
    r.send('a' * 51 + p64(0xfbad1800) + p64(0) * 3 + p64(addr))

 

  这里稍微解释一下,其中51是根据前面fake chunk和stdout的间隔计算出来的,如下所

0x7ffff7dd2620 - 0x7ffff7dd25dd - 0x10 = 51

 

  而后面的填充是根据stdout数据结构的偏移决定的,如下所示

truct _IO_FILE {
  int _flags;        /* High-order word is _IO_MAGIC; rest is flags. */
#define _IO_file_flags _flags

  /* The following pointers correspond to the C++ streambuf protocol. */
  /* Note:  Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
  char* _IO_read_ptr;    /* Current read pointer */
  char* _IO_read_end;    /* End of get area. */
  char* _IO_read_base;    /* Start of putback+get area. */
  char* _IO_write_base;    /* Start of put area. */
    ...
}

 

  这里p64(0xfbad1800)对应的是_flags,其余三个p64(0)对应的是_IO_read_ptr、_IO_read_ptr和_IO_read_base。这里唯一可能的问题在于为什么int类型的_flags对应的是64比特——因为字节对齐,c语言的特性,后边都是64比特的指针,所以这里被迫对齐到64比特,其余就没什么了。

posted @ 2020-08-23 10:24  hawkJW  阅读(1874)  评论(0编辑  收藏  举报