[scu 4423] Necklace

4423: Necklace

Description


baihacker bought a necklace for his wife on their wedding anniversary.
A necklace with N pearls can be treated as a circle with N points where the
distance between any two adjacent points is the same. His wife wants to color
every point, but there are at most 2 kinds of color. How many different ways
to color the necklace. Two ways are said to be the same iff we rotate one
and obtain the other.

Input


The first line is an integer T that stands for the number of test cases.
Then T line follow and each line is a test case consisted of an integer N.

Constraints:
T is in the range of [0, 4000]
N is in the range of [1, 1000000000]
N is in the range of [1, 1000000], for at least 75% cases.

Output


For each case output the answer modulo 1000000007 in a single line.

Sample Input


6
1
2
3
4
5
20

Sample Output


2
3
4
6
8
52488

Author


baihacker

疯狂地模板题,受不了,比赛的时候连这个定理都没听过,还傻乎乎地想了好久,晕死- -

复制代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
#define ll long long
#define N 32000

ll tot;
ll prime[N+10];
bool isprime[N+10];
ll phi[N+10];
void init()
{
    memset(phi,-1,sizeof(phi));
    memset(isprime,1,sizeof(isprime));
    tot=0;
    phi[1]=1;
    isprime[0]=isprime[1]=0;
    for(ll i=2;i<=N;i++)
    {
        if(isprime[i])
        {
            prime[tot++]=i;
            phi[i]=i-1;
        }
        for(ll j=0;j<tot;j++)
        {
            if(i*prime[j]>N) break;
            isprime[i*prime[j]]=0;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}
ll euler(ll n)
{
    if(n<=N) return phi[n];
    ll ret=n;
    for(ll i=0;prime[i]*prime[i]<=n;i++)
    {
        if(n%prime[i]==0)
        {
            ret-=ret/prime[i];
            while(n%prime[i]==0) n/=prime[i];
        }
    }
    if(n>1) ret-=ret/n;
    return ret;
}
ll quickpow(ll a,ll b,ll MOD)
{
    a%=MOD;
    ll ret=1;
    while(b)
    {
        if(b&1) ret=(ret*a)%MOD;
        a=(a*a)%MOD;
        b>>=1;
    }
    return ret;
}
ll exgcd(ll a,ll b,ll& x, ll& y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
ll inv(ll a,ll MOD)
{
    ll x,y;
    exgcd(a,MOD,x,y);
    x=(x%MOD+MOD)%MOD;
    return x;
}
void solve(ll n,ll MOD)
{
    ll i,t1,t2,ans=0;
    for(i=1;i*i<=n;i++)
    {
        if(n%i==0)
        {
            if(i*i!=n)
            {
                t1=euler(n/i)%MOD*quickpow(2,i,MOD);
                t2=euler(i)%MOD*quickpow(2,n/i,MOD);
                ans=(ans+t1+t2)%MOD;
            }
            else
                ans=(ans+euler(i)*quickpow(2,i,MOD))%MOD;
        }
    }
    ans=ans*inv(n,MOD)%MOD;
    printf("%d\n",ans);
}
int main()
{
    init();
    ll T,n;
    ll MOD=1000000007;
    scanf("%lld",&T);
    while(T--)
    {
        scanf("%lld",&n);
        solve(n,MOD);
    }
    return 0;
}
复制代码
 
posted @   哈特13  阅读(223)  评论(0编辑  收藏  举报
编辑推荐:
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
阅读排行:
· Windows桌面应用自动更新解决方案SharpUpdater5发布
· 我的家庭实验室服务器集群硬件清单
· C# 13 中的新增功能实操
· Supergateway:MCP服务器的远程调试与集成工具
· Vue3封装支持Base64导出的电子签名组件
点击右上角即可分享
微信分享提示