JDK1.8的HashMap实现原理和源码解析
哈希表(hash table)也叫散列表,是一种非常重要的数据结构。许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,本文会对java集合框架中的对应实现HashMap的实现原理进行讲解,然后会对JDK8的HashMap源码进行分析。
一、什么是哈希表
先了解下基本数据结构。
- 数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)。
- 线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)。
- 二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。
- 哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1)。
我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组。存储位置 = f(关键字),f函数就是哈希函数,关键字就是key,这个函数的设计好坏会直接影响到哈希表的优劣。
5.哈希冲突 : 然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。
二、HashMap实现原理
HashMap的主干是一个Node数组。Node是HashMap的基本组成单元,每一个Node包含一个key-value键值对。
/** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) * 第一次使用的时候才进行初始化,如果有需要会重新调整大小,当重新分配内存的时候,数组长度总是2的次方 */ transient Node<K,V>[] table;
Node是HashMap中的一个静态内部类。代码如下:
/** * Basic hash bin node, used for most entries. (See below for * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) */ // 与1.7中 Entry的内容大同小异,只是换了个名称而已! static class Node<K,V> implements Map.Entry<K,V> { final int hash; //对key的hashcode值进行hash运算后得到的值,存储在Node,避免重复计算 final K key; V value; Node<K,V> next; //存储指向下一个Node的引用 Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
几个重要属性:
/** * The default initial capacity - MUST be a power of two. * 默认初始化容量大小16,容量大小必须是2的次方 */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. * 最大的容量为 2^30 */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. * 负载因子,一旦超过就会进行扩容 */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). * 用于快速失败,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了 *(比如put,remov*e等操作),需要抛出异常ConcurrentModificationException */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial *阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后, *threshold一般为capacity*loadFactory。HashMap在进行扩容时需要参考threshold */ int threshold; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. *当一个bucket是一个链表,链表个数大于等于8时,就要树状化,也就是要从链表结构变成红黑树结构 */ static final int TREEIFY_THRESHOLD = 8;
HashMap构造函数:有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值initialCapacity默认为16,loadFactory默认为0.75
//指定初始容量,负载因子 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } //指定初始容量 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } //无参 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } //将已存在的map放进去进行初始化,若为空则抛null异常 public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); }
在常规构造器HashMap()中,没有为数组table分配内存空间,而是在执行put操作的时候才真正构建table数组。以下是put方法:
// 如果已经存在key对应的节点,则覆盖value值 public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } // 重写,putVal的第四个参数onlyIfAbsent=true,如果已经存在key对应的节点,不覆盖value值 @Override public V putIfAbsent(K key, V value) { return putVal(hash(key), key, value, true, true); } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) // 如果map为空时,调用resize()进行初始化! n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) // 如果没有在数组中找到对应的节点,则直接插入一个Node (未发生碰撞) tab[i] = newNode(hash, key, value, null); else { // 找到了(n - 1) & hash 对应下标的数组(tab)中的节点 ,也就是发生了碰撞 Node<K,V> e; K k; // 1. hash值一样,key值一样,则找到目标Node if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 2. 数组中找到的这个节点p是TreeNode类型,则需要插入到RBT里面一个节点 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { // 3. 不是TreeNode类型,则表示是一个链表,这里就类似与jdk1.7中的操作 for (int binCount = 0; ; ++binCount) { // 遍历链表 if ((e = p.next) == null) { // 4. 此时查找当前链表的次数已经超过7个,则需要链表RBT化! if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 5. 找到链表中对应的节点 break; p = e; } } // 如果e不为空,则表示在HashMap中找到了对应的节点 if (e != null) { // existing mapping for key V oldValue = e.value; // 当onlyIfAbsent=false 或者key对应的旧value为空时,用新的value替换旧value if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 操作次数+1 if (++size > threshold) // hashmap节点个数+1,并判断是否超过阈值,如果超过则重建结构! resize(); afterNodeInsertion(evict); return null; }
resize()函数:
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table;//定义临时Node数组型变量,作为hash table //读取hash table的长度 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold;//读取扩容门限 int newCap, newThr = 0;//初始化新的table长度和门限值 if (oldCap > 0) { //执行到这里,说明table已经初始化 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } //二倍扩容,容量和门限值都加倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold //用构造器初始化了门限值,将门限值直接赋给新table容量 newCap = oldThr; else { // zero initial threshold signifies using defaults //老的table容量和门限值都为0,初始化新容量,新门限值,在调用hashmap()方式构造容器时,就采用这种方式初始化 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { //如果门限值为0,重新设置门限 float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr;//更新新门限值为threshold @SuppressWarnings({"rawtypes","unchecked"}) //初始化新的table数组 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; //当原来的table不为null时,需要将table[i]中的节点迁移 if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; //取出链表中第一个节点保存,若不为null,继续下面操作 if ((e = oldTab[j]) != null) { oldTab[j] = null;//主动释放 if (e.next == null) //链表中只有一个节点,没有后续节点,则直接重新计算在新table中的index,并将此节点存储到新table对应的index位置处 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) //若e是红黑树节点,则按红黑树移动 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order //迁移单链表中的每个节点 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { //下面这段暂时没有太明白,通过e.hash & oldCap将链表分为两队,参考知乎上的一段解释 /** * 把链表上的键值对按hash值分成lo和hi两串,lo串的新索引位置与原先相同[原先位 * j],hi串的新索引位置为[原先位置j+oldCap]; * 链表的键值对加入lo还是hi串取决于 判断条件if ((e.hash & oldCap) == 0),因为* capacity是2的幂,所以oldCap为10...0的二进制形式,若判断条件为真,意味着 * oldCap为1的那位对应的hash位为0,对新索引的计算没有影响(新索引 * =hash&(newCap-*1),newCap=oldCap<<2);若判断条件为假,则 oldCap为1的那位* 对应的hash位为1, * 即新索引=hash&( newCap-1 )= hash&( (oldCap<<2) - 1),相当于多了10...0, * 即 oldCap * 例子: * 旧容量=16,二进制10000;新容量=32,二进制100000 * 旧索引的计算: * hash = xxxx xxxx xxxy xxxx * 旧容量-1 1111 * &运算 xxxx * 新索引的计算: * hash = xxxx xxxx xxxy xxxx * 新容量-1 1 1111 * &运算 y xxxx * 新索引 = 旧索引 + y0000,若判断条件为真,则y=0(lo串索引不变),否则y=1(hi串 * 索引=旧索引+旧容量10000) */ next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
get函数:
/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } /** * Implements Map.get and related methods * * @param hash hash for key * @param key the key * @return the node, or null if none */ final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { //分为红黑树和链表查找两种 if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } /** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { return getNode(hash(key), key) != null; }
下面主要关注是三个函数:
-
putTreeVal(this, tab, hash, key, value);
-
treeifyBin(tab, hash);
-
treeify().
原理图:
参考:https://www.cnblogs.com/chengxiao/p/6059914.html#t1