什么是极大似然估计(Maximum Likelihood Estimate, MLE)
1.理解
设总体有分布
记为
固定
则在观察时出现
把这件事反过来说,可以这么想:当已观察到
则被估计的参数
当
这个还是对不同的
把观察值
这里,参数
由上述分析就自然地导致以下的方法:应该用似然程度最大的那个点
的
因为
且为使L达到最大,只需使lnL达到最大(它们是同单调的,而取对数是为了求导的时候将连乘转为连加),故在f对
如果这个方程组有唯一的解,又能验证它是一个极大值点,则它必是使L达到最大的点,即极大似然估计。
2. 参考
《概率论与数理统计(陈希孺)》
详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
本文版权归作者(https://www.cnblogs.com/harrymore/)和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,如有问题, 可邮件(harrymore@126.com)咨询.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律