TJOI 2015 弦论

子串,容易想到 \(SAM\)

首先类似模板题一样的记录 \(num(v)\) 表示有多少子串经过 \(v\)

\(sum(v)\) 表示状态 \(v\) 在字符串中的出现次数

如果 \(T = 1\) 显然 \(sum(v)=1\)

否则,发现 \(sum(v)\) 实际就是其后继节点的 \(\sum_{}num(y)\)

然后 \(O(n)\) 即可扫除答案

#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
//#define int long long
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define ub upper_bound
#define lb lower_bound
#define pq priority_queue
#define mp make_pair
#define pb push_back
#define pof pop_front
#define pob pop_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(x) freopen(x".in", "r", stdin),freopen(x".out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 1000010 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
template <class T> void print(T a) { cout << a << endl ; exit(0) ; }
template <class T> void chmin(T &a, T b) { if (a > b) a = b ; }
template <class T> void chmax(T &a, T b) { if (a < b) a = b ; }
template <class T> void upd(T &a, T b) { (a += b) %= MOD ; }
template <class T> void mul(T &a, T b) { a = (ll) a * b % MOD ; }

int n, t, k, p, np, q, nq, last = 1, cnt = 1 ;
int sum[N], num[N], c[N], a[N] ;
char s[N] ;

struct node {
	int to[26], fa, len ;
} po[N] ;

void add(int c) {
	p = last ;
	last = np = ++cnt ;
	po[np].len = po[p].len + 1 ; num[np] = 1 ;
	for (; p && !po[p].to[c]; p = po[p].fa) po[p].to[c] = np ;
	if (!p) po[np].fa = 1 ;
	else {
		q = po[p].to[c] ;
		if (po[q].len == po[p].len + 1) po[np].fa = q ;
		else {
			nq = ++cnt ;
			po[nq] = po[q] ;
			po[nq].len = po[p].len + 1 ;
			po[np].fa = po[q].fa = nq ;
			for (; p && po[p].to[c] == q; p = po[p].fa) po[p].to[c] = nq ;
		}
	}
}

void work() {
	rep(i, 1, cnt) c[po[i].len]++ ;
	rep(i, 1, cnt) c[i] += c[i - 1] ;
	rep(i, 1, cnt) a[c[po[i].len]--] = i ;
	per(i, cnt, 1) {
		if (t) num[po[a[i]].fa] += num[a[i]] ;
		else num[a[i]] = 1 ;
	}
	num[1] = 0 ;
	per(i, cnt, 1) {
		sum[a[i]] = num[a[i]] ;
		rep(j, 0, 25)
		if (po[a[i]].to[j])
		sum[a[i]] += sum[po[a[i]].to[j]] ;
	}
}

void solve() {
	if (k > sum[1]) {
		puts("-1") ;
		return ;
	}
	int now = 1 ;
	k -= num[now] ;
	while (k > 0) {
		int p = 0 ;
		while (k > sum[po[now].to[p]]) {
			k -= sum[po[now].to[p]] ;
			p++ ;
		}
		now = po[now].to[p] ;
		putchar('a' + p) ;
		k -= num[now] ;
	}
}

signed main(){
//	file("test") ;
	scanf("%s%d%d", s + 1, &t, &k) ;
	n = strlen(s + 1) ;
	rep(i, 1, n) add(s[i] - 'a') ;
	work() ;
	solve() ;
	return 0 ;
}

/*
写代码时请注意:
	1.ll?数组大小,边界?数据范围?
	2.精度?
	3.特判?
	4.至少做一些
思考提醒:
	1.最大值最小->二分?
	2.可以贪心么?不行dp可以么
	3.可以优化么
	4.维护区间用什么数据结构?
	5.统计方案是用dp?模了么?
	6.逆向思维?
*/



posted @ 2019-04-17 17:41  harryhqg  阅读(114)  评论(0编辑  收藏  举报