SCOI 2010 股票交易 (单调队列优化dp)
\(f[i][j]\) 表示前 \(i\) 天,当前有 \(j\) 股的最大值
啥也不干: \(f[i][j] = f[i - 1][j]\)
直接买: \(j \in [0,as[i]] f[i][j] = -j * ap[i]\)
\(i\) 在 \(i - w - 1\) 的基础上买
\(f[i][j] = max(f[i - w - 1][k] - (j - k) * ap[i])\)
\(k \in [j - as[i], j]\)
\(i\) 在 \(i - w - 1\) 的基础上卖
\(f[i][j] = max(f[i - w - 1][k] + (k - j) * bp[i])\)
\(k \in [j, j + bs[i]]\)
显然可以通过单调队列优化,时间复杂度 \(O(np)\)
#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
//#define int long long
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define ub upper_bound
#define lb lower_bound
#define pq priority_queue
#define mp make_pair
#define pb push_back
#define pof pop_front
#define pob pop_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 2010 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
template <class T> void chmin(T &a, T b) { if (a > b) a = b ; }
template <class T> void chmax(T &a, T b) { if (a < b) a = b ; }
template <class T> void upd(T &a, T b) { (a += b) %= MOD ; }
template <class T> void mul(T &a, T b) { a = (ll) a * b % MOD ; }
int n, p, w, ans = -iinf ;
int ap[N], bp[N], as[N], bs[N], q[N] ;
int f[N][N] ;
int hd, tl ;
signed main(){
scanf("%d%d%d", &n, &p, &w) ;
rep(i, 1, n) scanf("%d%d%d%d", &ap[i], &bp[i], &as[i], &bs[i]) ;
ass(f, 0xcf) ;
rep(i, 1, n) {
rep(j, 0, as[i]) f[i][j] = -j * ap[i] ;
rep(j, 0, p) chmax(f[i][j], f[i - 1][j]) ;
if (i - w <= 1) continue ;
hd = 1, tl = 0 ;
rep(j, 0, p) {
while (hd <= tl && q[hd] < j - as[i]) hd++ ;
if (hd <= tl) { // isn't empty
int k = q[hd] ;
chmax(f[i][j], f[i - w - 1][k] + (k - j) * ap[i]) ;
}
while (hd <= tl && f[i - w - 1][q[tl]] + q[tl] * ap[i] <= f[i - w - 1][j] + j * ap[i]) tl-- ;
q[++tl] = j ;
}
hd = 1, tl = 0 ;
per(j, p, 0) {
while (hd <= tl && q[hd] > j + bs[i]) hd++ ;
if (hd <= tl) {
int k = q[hd] ;
chmax(f[i][j], f[i - w - 1][k] + (k - j) * bp[i]) ;
}
while (hd <= tl && f[i - w - 1][q[tl]] + q[tl] * bp[i] <= f[i - w - 1][j] + j * bp[i]) tl-- ;
q[++tl] = j ;
}
}
rep(i, 0, p) ans = max(ans, f[n][i]) ;
printf("%d\n", ans) ;
return 0 ;
}
/*
f[i][j] 表示前 i 天,当前有 j 股的最大值
啥也不干: f[i][j] = f[i - 1][j]
直接买: j ∈[0, as[i]] f[i][j] = -j * ap[i]
i 在 i - w - 1 的基础上买:
f[i][j] = max(f[i - w - 1][k] - (j - k) * ap[i]) (k ∈ [j - as[i], j])
i 在 i - w - 1 的基础上卖:
f[i][j] = max(f[i - w - 1][k] + (k - j) * bp[i]) (k ∈ [j, j + bs[i]])
*/
/*
写代码时请注意:
1.ll?数组大小,边界?数据范围?
2.精度?
3.特判?
4.至少做一些
思考提醒:
1.最大值最小->二分?
2.可以贪心么?不行dp可以么
3.可以优化么
4.维护区间用什么数据结构?
5.统计方案是用dp?模了么?
6.逆向思维?
*/
加油ヾ(◍°∇°◍)ノ゙