Codeforces 432D Prefixes and Suffixes (kmp+dp)

发现这个水题

一眼就感觉是 \(kmp\), 因为 \(nxt\) 数组天生就是干这种事情的

答案集合就是从 \(n\)\(nxt\) 所能跳到的所有节点

那个出现次数怎么搞?

显然可以 \(dp\)

\(dp[i]\) 表示跳到 \(i\) 的方案数

然后倒叙枚举 \(i\), \(dp[nxt[i]]+=dp[i]\)

然后就没了

#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
//#define int long long
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define ub upper_bound
#define lb lower_bound
#define pq priority_queue
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 100010 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
template <class T> void chmin(T &a, T b) { if (a > b) a = b ; }
template <class T> void chmax(T &a, T b) { if (a < b) a = b ; }
template <class T> void upd(T &a, T b) { (a += b) %= MOD ; }
template <class T> void mul(T &a, T b) { a = 1ll * a * b % MOD ; }

int n ;
vi ans ;
int dp[N], nxt[N] ;
char s[N] ;

signed main() {
    scanf("%s", s + 1) ;
    n = strlen(s + 1) ;
    nxt[1] = 0 ;
    for (int i = 2, j = 0; i <= n; i++) {
        while (j && s[j + 1] != s[i]) j = nxt[j] ;
        if (s[j + 1] == s[i]) j++ ;
        nxt[i] = j ;
    }
    for (int i = nxt[n]; i; i = nxt[i]) ans.pb(i) ;
    clr(dp) ;
    per(i, n, 1) {
        dp[i]++ ;
        dp[nxt[i]] += dp[i] ;
    }
    printf("%d\n", siz(ans) + 1) ;
    per(i, siz(ans) - 1, 0) printf("%d %d\n", ans[i], dp[ans[i]]) ;
    printf("%d %d\n", n, dp[n]) ;

    return 0 ;
}

/*
写代码时请注意:
    1.ll?数组大小,边界?数据范围?
    2.精度?
    3.特判?
    4.至少做一些
思考提醒:
    1.最大值最小->二分?
    2.可以贪心么?不行dp可以么
    3.可以优化么
    4.维护区间用什么数据结构?
    5.统计方案是用dp?模了么?
    6.逆向思维?(正難則反)
*/


posted @ 2019-03-18 18:42  harryhqg  阅读(192)  评论(0编辑  收藏  举报