恐狼后卫 (区间dp)

首先是一个显然的结论:肯定是一口气把一头狼杀死,因为如果东砍一刀,西砍一刀,这样显然不会比直接砍死优

然后就是非常简单的 \(dp\)

\(dp[i][j]\) 表示杀死了 \(i\)\(j\) 范围内的狼的最小代价

枚举最后一头杀死的狼 \(k\),转移即可

#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
//#define int long long
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define ub upper_bound
#define lb lower_bound
#define pq priority_queue
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 410 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
template <class T> void chmin(T &a, T b) { if (a > b) a = b ; }
template <class T> void chmax(T &a, T b) { if (a < b) a = b ; }
void upd(int &a, int b) { (a += b) %= MOD ; }
void mul(int &a, int b) { a = 1ll * a * b % MOD ; }

int n, m ;
int a[N], b[N], h[N] ;
int dp[N][N] ; // dp[i][j] 表示消灭 [l,r] 区间的恐狼后卫的最小代价

signed main() {
	freopen("wolf.in", "r", stdin) ;
	freopen("wolf.out", "w", stdout) ;
	scanf("%d%d", &n, &m) ;
	rep(i, 1, n) scanf("%d%d%d", &a[i], &b[i], &h[i]) ;
	rep(i, 1, n) h[i]-- ;
	rep(i, 1, n)
	dp[i][i] = (a[i] + b[i - 1] + b[i + 1]) * (h[i] / m + 1) ;
	rep(len, 1, n - 1)
	rep(i, 1, n - len) {
		int j = i + len ; dp[i][j] = iinf ;
		rep(k, i, j) { // 枚举断点 k 表示只剩下 k 还活着
			int x = dp[i][k - 1] + dp[k + 1][j] ;
			int y = (a[k] + b[i - 1] + b[j + 1]) * (h[k] / m + 1) ;
			dp[i][j] = min(dp[i][j], x + y) ;
		}
	}
	printf("%d\n", dp[1][n]) ;
}

/*
写代码时请注意:
    1.ll?数组大小,边界?数据范围?
    2.精度?
    3.特判?
    4.至少做一些
思考提醒:
    1.最大值最小->二分?
    2.可以贪心么?不行dp可以么
    3.可以优化么
    4.维护区间用什么数据结构?
    5.统计方案是用dp?模了么?
    6.逆向思维?(正難則反)
*/

posted @ 2019-03-17 21:24  harryhqg  阅读(249)  评论(0编辑  收藏  举报