售票系统 (线段树)

仔细分析,其实是一个非常水的题目

我们把一个区间已经用的票记录在线段树上

就相当于对于一个区间查找区间最大值,如果可行,那么继续修改

注意坐车相当于查询区间 \([a,b)\),建树是 \(build(1,1,n+1)\)

其他就没什么了

#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
//#define int long long
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define ub upper_bound
#define lb lower_bound
#define pq priority_queue
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 100010 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
template <class T> void chmin(T &a, T b) { if (a > b) a = b ; }
template <class T>void chmax(T &a, T b) { if (a < b) a = b ; }

int n, m, q ;

struct SegTree {
    int l, r, v, tag ;
    #define ls(x) x << 1
    #define rs(x) x << 1 | 1
    #define l(x) tr[x].l
    #define r(x) tr[x].r
    #define sz(x) (tr[x].r - tr[x].l + 1)
    #define v(x) tr[x].v
    #define tag(x) tr[x].tag
} tr[N << 2] ;

void pushup(int x) {
    v(x) = max(v(ls(x)), v(rs(x))) ;
}

void pushdown(int x) {
    if (tag(x)) {
        tag(ls(x)) += tag(x) ;
        tag(rs(x)) += tag(x) ;
        v(ls(x)) += tag(x) ;
        v(rs(x)) += tag(x) ;
        tag(x) = 0 ;
    }
}

void build(int x, int l, int r) {
    l(x) = l, r(x) = r ;
    if (l(x) == r(x)) return ;
    int mid = (l + r) >> 1 ;
    build(ls(x), l, mid) ;
    build(rs(x), mid + 1, r) ;
}

void modify(int x, int l, int r, int v) {
    if (l <= l(x) && r(x) <= r) {
        tag(x) += v ; v(x) += v ;
        return ;
    }
    pushdown(x) ;
    int mid = (l(x) + r(x)) >> 1 ;
    if (l <= mid) modify(ls(x), l, r, v) ;
    if (mid < r) modify(rs(x), l, r, v) ;
    pushup(x) ;
}

int query(int x, int l, int r) {
    if (l <= l(x) && r(x) <= r) return v(x) ;
    pushdown(x) ;
    int mid = (l(x) + r(x)) >> 1, ans = 0 ;
    if (l <= mid) ans = max(ans, query(ls(x), l, r)) ;
    if (mid < r) ans = max(ans, query(rs(x), l, r)) ;
    return ans ;
}

signed main(){
    scanf("%d%d%d", &n, &m, &q) ;
    build(1, 1, n + 1) ;
    while (q--) {
        int s, e, v ; scanf("%d%d%d", &s, &e, &v) ; e-- ;
        int hv = query(1, s, e) ;
        if (m - hv >= v) {
            puts("YES") ;
            modify(1, s, e, v) ;
        } else {
            puts("NO") ;
        }
    }
    return 0 ;
}

/*
写代码时请注意:
    1.ll?数组大小,边界?数据范围?
    2.精度?
    3.特判?
    4.至少做一些
思考提醒:
    1.最大值最小->二分?
    2.可以贪心么?不行dp可以么
    3.可以优化么
    4.维护区间用什么数据结构?
    5.统计方案是用dp?模了么?
    6.逆向思维?
*/



posted @ 2019-03-14 20:37  harryhqg  阅读(248)  评论(0编辑  收藏  举报