Construct Binary Tree from Preorder and Inorder Traversal
问题描述
Given preorder and inorder traversal of a tree, construct the binary tree.
解决思路
首先确定根节点,然后确定左右子树的节点数目。依次递归即可。
假设输入的序列均合法。
程序
public class BuildTreeFromPreorderAndInorder { public TreeNode buildTree(int[] preorder, int[] inorder) { if (preorder == null || inorder == null || preorder.length == 0 || preorder.length != inorder.length) { return null; } int len = preorder.length; TreeNode root = buildHelper(preorder, 0, len - 1, inorder, 0, len - 1); return root; } private TreeNode buildHelper(int[] preorder, int pre_start, int pre_end, int[] inorder, int in_start, int in_end) { // bound if (pre_start > pre_end || in_start > in_end) { return null; } int rootVal = preorder[pre_start]; TreeNode root = new TreeNode(rootVal); // find root-val in inorder list int i = 0; for (; i <= in_end; i++) { if (inorder[i] == rootVal) { break; } } int leftLen = i - in_start; root.left = buildHelper(preorder, pre_start + 1, pre_start + leftLen, inorder, in_start, i - 1); root.right = buildHelper(preorder, pre_start + leftLen + 1, pre_end, inorder, i + 1, in_end); return root; } }
Follow up
如果给定的是中序和后序遍历序列,如何构建二叉树?
解决思路是类似的。
程序
public class BuildTreeFromInorderAndPostorder { public TreeNode buildTree(int[] inorder, int[] postorder) { if (inorder == null || postorder == null || inorder.length == 0 || inorder.length != postorder.length) { return null; } int len = inorder.length; TreeNode root = buildHelper(inorder, 0, len - 1, postorder, 0, len-1); return root; } private TreeNode buildHelper(int[] inorder, int in_start, int in_end, int[] postorder, int post_start, int post_end) { if (in_start > in_end || post_start > post_end) { return null; } int rootVal = postorder[post_end]; TreeNode root = new TreeNode(rootVal); int i = in_start; for (; i <= in_end; i++) { if (inorder[i] == rootVal) { break; } } int leftLen = i - in_start; root.left = buildHelper(inorder, in_start, i-1, postorder, post_start, post_start+leftLen-1); root.right = buildHelper(inorder, i+1, in_end, postorder, post_start+leftLen, post_end - 1); return root; } }