编辑距离和最长公共子串
编辑距离和最长公共子串问题都是经典的DP问题,首先来看看编辑距离问题:
问题描述
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解决思路
经典的动态规划题,建立一个二维的数组dp[][]记录两个字符串s1和s2子串的最短编辑距离,递推公式如下:
(1) 当s1.charAt(i) == s2.charAt(j)时,dp[i][j] = dp[i - 1][j - 1];
(2) 其他时,dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j]));
初始化条件为:
dp[i][0] = i, dp[0][j] = j;
代码
int getMinEditLen(String s1, String s2) { if (s1 == null && s2 == null) { return 0; } if (s1.length() == 0) { return s2.length(); } if (s2.length() == 0) { return s1.length(); } int len1 = s1.length(); int len2 = s2.length(); int[][] dp = new int[len1 + 1][len2 + 1]; // initialize for (int i = 0; i < dp.length; i++) { dp[i][0] = i; } for (int j = 0; j < dp[0].length; j++) { dp[0][j] = j; } for (int i = 1; i < dp.length; i++) { for (int j = 1; j < dp[0].length; j++) { if (s1.charAt(i - 1) == s2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1; } } } return dp[len1][len2]; }
容易写错的地方
if (word1.substring(0, i).equals(word2.substring(0, j))) { dp[i][j] = 0; }
最长公共子串问题
问题描述
子字符串的定义和子序列的定义类似,但要求是连续分布在其他字符串中。比如输入两个字符串BDCABA和ABCBDAB的最长公共字符串有BD和AB,它们的长度都是2。
解决思路
(1) 递归;
(2) dp;
代码
// rec int getLCS(String s1, String s2) { if (s1.length() == 0 || s2.length() == 0) { return 0; } int len1 = s1.length(); int len2 = s2.length(); if (s1.charAt(len1 - 1) == s2.charAt(len2 - 1)) { return getLCS(s1.substring(0, len1 - 1), s2.substring(0, len2 - 1)) + 1; } return Math.max( getLCS(s1.substring(0, len1), s2.substring(0, len2 - 1)), getLCS(s1.substring(0, len1 - 1), s2.substring(0, len2))); }
// dp int getLCS(String s1, String s2) { if (s1.length() == 0 || s2.length() == 0) { return 0; } int len1 = s1.length(); int len2 = s2.length(); int[][] dp = new int[len1 + 1][len2 + 1]; for (int i = 1; i < dp.length; i++) { for (int j = 1; j < dp[0].length; j++) { if (s1.charAt(i - 1) == s2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = 0; } } } return dp[len1][len2]; }
拓展:最公共子序列问题。
例如s1 = "abc", s2 = "asbvcd", s1和s2的最长公共子序列为"abc",长度为3.
public class LongestCommonSequence { public int getLCSeqLen(String s1, String s2) { if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) { return 0; } int len1 = s1.length(), len2 = s2.length(); int[][] dp = new int[len1 + 1][len2 + 1]; for (int i = 1; i <= len1; i++) { for (int j = 1; j <= len2; j++) { if (s1.charAt(i - 1) == s2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[len1][len2]; } public String getLCSeq(String s1, String s2) { if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) { return ""; } int len1 = s1.length(), len2 = s2.length(); int[][] dp = new int[len1 + 1][len2 + 1]; String lcs = ""; for (int i = 1; i <= len1; i++) { for (int j = 1; j <= len2; j++) { if (s1.charAt(i - 1) == s2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1] + 1; lcs += s1.charAt(i - 1); } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return lcs; } }