02 2024 档案

摘要:贾志刚老师的博文 https://blog.csdn.net/jia20003/article/details/134973175 阅读全文
posted @ 2024-02-26 21:44 harrychinese 阅读(101) 评论(0) 推荐(0) 编辑
摘要:可编辑模式下安装 python 包 一般情况下, 我们使用的是 pip install pkg 来完成包的安装, 默认的安装的目标目录在 site-packages 下, 这种情况非常适合我们引用某些成熟包. 如果我们想要给github某个项目贡献PR, 或者仅仅要魔改一下某个项目, 可以使用 ed 阅读全文
posted @ 2024-02-26 21:34 harrychinese 阅读(173) 评论(0) 推荐(0) 编辑
摘要:在参考文献1中作者给出了多种注意力实现机制, 并指出了 ResCBAM 机制涨点效果最好, 给提供非常详尽的工程化说明. 代码示例: https://github.com/ruiyangju/fracture_detection_improved_yolov8 https://github.com/ 阅读全文
posted @ 2024-02-25 20:49 harrychinese 阅读(409) 评论(0) 推荐(0) 编辑
摘要:钢板缺陷识别-机器视觉案例-Kaggle比赛 https://blog.csdn.net/weixin_46614841/article/details/122202408 https://github.com/PaddlePaddle/awesome-DeepLearning/tree/maste 阅读全文
posted @ 2024-02-20 21:19 harrychinese 阅读(46) 评论(0) 推荐(0) 编辑
摘要:yolov5 自带 flask api https://github.com/ultralytics/yolov5/blob/master/utils/flask_rest_api/README.md Yolov5-on-Flask项目: https://github.com/muhk01/Yolo 阅读全文
posted @ 2024-02-19 21:27 harrychinese 阅读(67) 评论(0) 推荐(0) 编辑
摘要:特征融合 特征融合通常是指将不同层次的feature map进行整合, 以便在检测head能利用不同尺寸的信息. 特征融合手段包括: concat 拼接 FPN 特征金字塔网络 BiFPN 双向特征金字塔网络 SCP 结构单元: 这些结构单元通过卷积核归一化操作完成特征优化, 减少计算量 注意力机制 阅读全文
posted @ 2024-02-19 21:22 harrychinese 阅读(115) 评论(0) 推荐(0) 编辑
摘要:论文1 论文地址: https://www.mdpi.com/2227-9717/12/1/205 Research on an Intelligent Identification Method for Wind Turbine Blade Damage Based on CBAM-BiFPN-Y 阅读全文
posted @ 2024-02-19 21:19 harrychinese 阅读(233) 评论(0) 推荐(0) 编辑
摘要:SAHI 资料 yolov8示例代码: https://github.com/obss/sahi/blob/main/demo/inference_for_yolov8.ipynb 测试图像: https://github.com/obss/sahi/blob/main/tests/data/sma 阅读全文
posted @ 2024-02-19 15:12 harrychinese 阅读(373) 评论(1) 推荐(0) 编辑
摘要:Windows 窗体应用可以使用一些现成的C#类库实现yolov8的predict功能, 本文使用https://github.com/dme-compunet/YoloV8 项目的nuget包, 最新版是 https://github.com/dme-compunet/YoloSharp. 集成方 阅读全文
posted @ 2024-02-17 19:11 harrychinese 阅读(6705) 评论(1) 推荐(3) 编辑
摘要:https://learnopencv.com/train-yolo-nas-on-custom-dataset/ https://learnopencv.com/yolo-nas/ https://docs.deci.ai/super-gradients/latest/documentation/ 阅读全文
posted @ 2024-02-16 21:03 harrychinese 阅读(81) 评论(0) 推荐(0) 编辑
摘要:tensorboard 功能 Yolov8源码已经集成了很多个metrics监控系统, 源码位置: ultralytics\utils\callbacks\, 包括 wandb、 tensorboard、 clearml 等等. 和其他系统相比, tensorboard 功能较弱. yolov8 自 阅读全文
posted @ 2024-02-15 23:12 harrychinese 阅读(252) 评论(0) 推荐(0) 编辑
摘要:参考文档: https://docs.ultralytics.com/modes/predict/#working-with-results https://zhuanlan.zhihu.com/p/655162922 https://thinkinfi.com/motorcycle-helmet- 阅读全文
posted @ 2024-02-15 13:50 harrychinese 阅读(388) 评论(0) 推荐(0) 编辑
摘要:本文内容基本摘抄自公众号文章: 小目标检测问题分析和优化思路 小目标检测面临的挑战: 可用特征少 定位精度要求高 数据集中的小目标数量占比少 小目标标注面积占比小 样本不均匀问题 小目标聚集问题 网络结构问题 优化思路1: 数据增强 数据增强是一个提升检测性能简单有效方法, 我们可以使用数据增强方法 阅读全文
posted @ 2024-02-14 18:48 harrychinese 阅读(1469) 评论(0) 推荐(0) 编辑
摘要:我自己找的文章 理解yaml模型文件: https://blog.csdn.net/qq1198768105/article/details/125848134 https://blog.csdn.net/qq_42452134/category_12534068.html https://zhua 阅读全文
posted @ 2024-02-14 16:51 harrychinese 阅读(59) 评论(0) 推荐(0) 编辑
摘要:Wandb 概述 WandB 即 Weigtht and Bias的缩写, 是深度学习中经常使用的metrics记录工具, 功能比TensorBoard强大, 主要功能有: 它可以记录每次训练的版本信息, 包括超参、tag、project 等 自动上传云端,方便将多台机器的实验做对比分析 强大的表格 阅读全文
posted @ 2024-02-06 23:07 harrychinese 阅读(757) 评论(0) 推荐(0) 编辑
摘要:测试场景 我的电脑没有GPU, 想着增加内存多少会提升一下深度学习的速度, 实践证明, 增加内存并不能提升速度, 连一星点效果都没有, 原因也简单, 瓶颈在CPU上而不是内存. 如果手上没有GPU的电脑, 还是直接在算力平台上租用靠谱. 测试结果如下: 内存 batch 内存使用率 5 epoch耗 阅读全文
posted @ 2024-02-03 16:07 harrychinese 阅读(15) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示