模拟赛1102d2

/*
  φ(n)=φ(p^k)=p^k-p^(k-1)=(p-1)*p^(k-1)
  φ(m*n)=φ(m)*φ(n)
  直接套公式做,因为分解质因数时,只分解一个数,所以可以不打素数表,只将n分解到√n就行了。
*/
#include<iostream>
#include<cstdio>
#define ll long long
#define N 1000010LL
using namespace std;
ll prime[N],c[N],P[N],f[N],num,n;
ll poww(ll a,ll b)
{
    ll base=a,r=1;
    while(b)
    {
        if(b&1)r*=base;
        base*=base;
        b/=2;
    }
    return r;
}
int main()
{
    freopen("phi.in","r",stdin);
    freopen("phi.out","w",stdout);
    cin>>n;
    for(ll i=2;i<=min(n,N-1);i++)
    {
        if(!f[i])
        {
            prime[++num]=i;P[i]=num;
            for(ll j=2;i*j<=min(n,N-1);j++)
              f[i*j]=1;
        }
    }
    ll x=n;
    for(ll i=1;i<=num;i++)
    {
        ll p=prime[i];
        while(x%p==0)c[i]++,x/=p;
        if(x<N)if(!f[x])
        {
            c[P[x]]++;break;
        }
        if(x==1)break;
    }
    ll ans=1;
    for(ll i=1;i<=num;i++)
      if(c[i])ans*=(prime[i]-1)*poww(prime[i],c[i]-1);
    if(x>N)ans*=(x-1);
    cout<<ans;
    fclose(stdin);
    fclose(stdout);
    return 0;
}

 

/*
  φ(n)=φ(p1^k1+p2^k2……)=(p1-1)p1^k1-1+……=m
  利用公式反推:从大到小枚举素数。
*/
#include<cstdio>
#include<iostream>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#define N 10000010
#define ll long long
using namespace std;
bool f[N];ll n,k,prime[N/10],num,ans[N/10];
void gprime()
{
    for(ll i=2;i<=N-10;i++)
    {
        if(!f[i])prime[++num]=i;
        for(ll j=1;j<=num;j++)
          {
              if(i*prime[j]>N-10)break;
              f[i*prime[j]]=1;
              if(i%prime[j]==0)break;
        }
    }          
}
ll gcd(ll a,ll b)
{
     if(b==0)return a;
     return gcd(b,a%b);
}
ll mul(ll x,ll y,ll z)
{
    ll r=0;
    while(y)
    {
        if(y&1)r+=x,r%=z,y--;
        x<<=1;x%=z;y>>=1;
    }
    return r;
}
ll poww(ll a,ll b,ll mod)
{
    ll base=a,r=1;
    while(b)
    {
        if(b&1)r=mul(r,base,mod);
        base=mul(base,base,mod);
        b>>=1;
    }
    return r;
}
bool is_prime(ll x)//费马小定理判断素数 
{
    for(ll i=1;i<=5;i++)
    {
        ll y=rand()%(N-10)+1;
        if(y<0)y=y-y;
        ll z=poww(y,x-1,x);
        if(z!=1)return false;
    }
    return true;
}
void dfs(ll x,ll y,ll z)
{
    if(x==1)
    {
        ans[++ans[0]]=y;return;
    }
    if(x+1>prime[num]&&is_prime(x+1))
      ans[++ans[0]]=y*(x+1);
    for(ll i=z;i>=1;i--)
    {
        if(x%(prime[i]-1)!=0)continue;
        ll a=x/(prime[i]-1),b=y,c=1;
        while(a%c==0)
        {
            b*=prime[i];dfs(a/c,b,i-1);c*=prime[i];
        }
    }
}
int main()
{
    freopen("arc.in","r",stdin);
    freopen("arc.out","w",stdout);
    cin>>n>>k;
    srand(time(0));
    gprime();dfs(n,1,num);
    sort(ans+1,ans+ans[0]+1);
    for(ll i=1;i<=k;i++)
      cout<<ans[i]<<" ";
    return 0;
}

 

 

 

/*筛法求欧拉函数*/
#include<iostream>
#include<cstdio>
#define ll long long
#define N 10000010
using namespace std;
int n;
ll ans,f[N];
void X(ll x)
{
    for(int i=1;i<=x;i++)f[i]=i;
    for(int i=2;i<=x/2;i++)
    {
        if(f[i]==i)
        {
            for(int j=i;j<=x;j+=i)
            {
                f[j]=f[j]*(i-1)/i;
            }
        }
    }
}
int main()
{
    freopen("sum.in","r",stdin);
    freopen("sum.out","w",stdout);
    cin>>n;
    X(n);ans=1;
    for(int i=2;i<=n;i++)
    {
        if(f[i]==i)f[i]--;
        ans+=f[i];
    }
    cout<<ans<<endl;
    fclose(stdin);fclose(stdout);
    return 0;
}                

 

 
posted @ 2016-11-07 10:53  karles~  阅读(226)  评论(0编辑  收藏  举报