最长链(codevs 1814)

题目描述 Description

现给出一棵N个结点二叉树,问这棵二叉树中最长链的长度为多少,保证了1号结点为二叉树的根。

输入描述 Input Description

输入的第1行为包含了一个正整数N,为这棵二叉树的结点数,结点标号由1至N。

接下来N行,这N行中的第i行包含两个正整数l[i], r[i],表示了结点i的左儿子与右儿子编号。如果l[i]为0,表示结点i没有左儿子,同样地,如果r[i]为0则表示没有右儿子。

输出描述 Output Description

输出包括1个正整数,为这棵二叉树的最长链长度。

样例输入 Sample Input

5

2 3

4 5

0 6

0 0

0 0

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

【样例说明】

  4-2-1-3-6为这棵二叉树中的一条最长链。

 

【数据规模】

对于10%的数据,有N≤10;

对于40%的数据,有N≤100;

对于50%的数据,有N≤1000;

对于60%的数据,有N≤10000;

对于100%的数据,有N≤100000,且保证了树的深度不超过32768。

 

【提示】

关于二叉树:

二叉树的递归定义:二叉树要么为空,要么由根结点,左子树,右子树组成。左子树和右子树分别是一棵二叉树。

请注意,有根树和二叉树的三个主要差别:

1. 树的结点个数至少为1,而二叉树的结点个数可以为0;

2. 树中结点的最大度数没有限制,而二叉树结点的最大度数为2;

3. 树的结点无左、右之分,而二叉树的结点有左、右之分。

关于最长链:

最长链为这棵二叉树中一条最长的简单路径,即不经过重复结点的一条路径。可以容易证明,二叉树中最长链的起始、结束结点均为叶子结点。

/*
   分析:一遍dfs求出某个节点到到叶子节点的最长距离,记为len[i],在求出以某个点为
      祖先的最长链长度,记为f[i],取最大的f[i]即为答案
*/
#include<cstdio>
#include<iostream>
#define M 100010
using namespace std;
int lch[M],rch[M],len[M],f[M],n;
int read()
{
    char c=getchar();int num=0,flag=1;
    while(c<'0'||c>'9'){if(c=='-')flag=-1;c=getchar();}
    while(c>='0'&&c<='9'){num=num*10+c-'0';c=getchar();}
    return num*flag;
}
void dfs(int x)
{
    if(len[x])return;
    if(lch[x])dfs(lch[x]);
    if(rch[x])dfs(rch[x]);
    if(rch[x]||lch[x])len[x]=max(len[lch[x]],len[rch[x]])+1;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
      lch[i]=read(),rch[i]=read();
    dfs(1);
    for(int i=1;i<=n;i++)
    {
        f[i]=len[lch[i]]+len[rch[i]];
        if(lch[i])f[i]++;
        if(rch[i])f[i]++;
    }
    int ans=0;
    for(int i=1;i<=n;i++)
      ans=max(ans,f[i]);
    printf("%d",ans);
    return 0;
}
View Code

 

posted @ 2016-08-05 16:49  karles~  阅读(369)  评论(0编辑  收藏  举报