【转】Hostapd工作流程分析

  【转】Hostapd工作流程分析 

转自:http://blog.chinaunix.net/uid-30081165-id-5290531.html

  Hostapd是一个运行在用户态的守护进程,可以通过Hostapd来读取配置文件,通过nl802.11来控制底层的状态如RTS/CTS beacon帧间隔等等信息;也可以读取相关的信息。

  其代码框架如下图所示:hostapd_cli是基于文本的命令命令界面,GUI则是图形控制界面;event loop是一个死循环函数用于接收和处理各种事件信息。

下图是各种命令配置工具以及无线工作流程:

实际上可以看到无论是wpa_supplient iw还是hostapd工具都是通过调用libnl的相关方法来完成信息的配置预读取的。

         接下来分析hostaod的主函数:

int main(int argc, char *argv[])
{
    struct hapd_interfaces interfaces;
    int ret = 1;
    size_t i, j;
    int c, debug = 0;
    const char *log_file = NULL;
    const char *entropy_file = NULL;
    char **bss_config = NULL, **tmp_bss;
    size_t num_bss_configs = 0;
#ifdef CONFIG_DEBUG_LINUX_TRACING
    int enable_trace_dbg = 0;
#endif /* CONFIG_DEBUG_LINUX_TRACING */

    if (os_program_init())
        return -1;

    os_memset(&interfaces, 0, sizeof(interfaces));
    interfaces.reload_config = hostapd_reload_config;
    interfaces.config_read_cb = hostapd_config_read;
    interfaces.for_each_interface = hostapd_for_each_interface;
    interfaces.ctrl_iface_init = hostapd_ctrl_iface_init;
    interfaces.ctrl_iface_deinit = hostapd_ctrl_iface_deinit;
    interfaces.driver_init = hostapd_driver_init;
    interfaces.global_iface_path = NULL;
    interfaces.global_iface_name = NULL;
    interfaces.global_ctrl_sock = -1;

    wpa_supplicant_event = hostapd_wpa_event;
    //分析配置文件信息
    for (;;) {
        c = getopt(argc, argv, "b:Bde:f:hKP:Ttu:g:G:v::");
        if (c < 0)
            break;
        switch (c) {
        case 'h':
            usage();
            break;
        case 'd':
            debug++;
            if (wpa_debug_level > 0)
                wpa_debug_level--;
            break;
        case 'B':
            daemonize++;
            break;
        case 'e':
            entropy_file = optarg;
            break;
        case 'f':
            log_file = optarg;
            break;
        case 'K':
            wpa_debug_show_keys++;
            break;
        case 'P':
            os_free(pid_file);
            pid_file = os_rel2abs_path(optarg);
            break;
        case 't':
            wpa_debug_timestamp++;
            break;
#ifdef CONFIG_DEBUG_LINUX_TRACING
        case 'T':
            enable_trace_dbg = 1;
            break;
#endif /* CONFIG_DEBUG_LINUX_TRACING */
        case 'v':
            if (optarg)
                exit(!has_feature(optarg));
            show_version();
            exit(1);
            break;
        case 'g':
            if (hostapd_get_global_ctrl_iface(&interfaces, optarg))
                return -1;
            break;
        case 'G':
            if (hostapd_get_ctrl_iface_group(&interfaces, optarg))
                return -1;
            break;
        case 'b':
            tmp_bss = os_realloc_array(bss_config,
                num_bss_configs + 1,
                sizeof(char *));
            if (tmp_bss == NULL)
                goto out;
            bss_config = tmp_bss;
            bss_config[num_bss_configs++] = optarg;
            break;
#ifdef CONFIG_WPS
        case 'u':
            return gen_uuid(optarg);
#endif /* CONFIG_WPS */
        default:
            usage();
            break;
        }
    }

    if (optind == argc && interfaces.global_iface_path == NULL &&
        num_bss_configs == 0)
        usage();

    wpa_msg_register_ifname_cb(hostapd_msg_ifname_cb);

    if (log_file)
        wpa_debug_open_file(log_file);
#ifdef CONFIG_DEBUG_LINUX_TRACING
    if (enable_trace_dbg) {
        int tret = wpa_debug_open_linux_tracing();
        if (tret) {
            wpa_printf(MSG_ERROR, "Failed to enable trace logging");
            return -1;
        }
    }
#endif /* CONFIG_DEBUG_LINUX_TRACING */

    interfaces.count = argc - optind;
    if (interfaces.count || num_bss_configs) {
        interfaces.iface = os_calloc(interfaces.count + num_bss_configs,
            sizeof(struct hostapd_iface *));
        if (interfaces.iface == NULL) {
            wpa_printf(MSG_ERROR, "malloc failed");
            return -1;
        }
    }

    //初始化global context信息
    if (hostapd_global_init(&interfaces, entropy_file)) {
        wpa_printf(MSG_ERROR, "Failed to initilize global context");
        return -1;
    }

    /* Allocate and parse configuration for full interface files */
    for (i = 0; i < interfaces.count; i++) {
        interfaces.iface[i] = hostapd_interface_init(&interfaces,
            argv[optind + i],
            debug);
        if (!interfaces.iface[i]) {
            wpa_printf(MSG_ERROR, "Failed to initialize interface");
            goto out;
        }
    }

    /* Allocate and parse configuration for per-BSS files */
    for (i = 0; i < num_bss_configs; i++) {
        struct hostapd_iface *iface;
        char *fname;

        wpa_printf(MSG_INFO, "BSS config: %s", bss_config[i]);
        fname = os_strchr(bss_config[i], ':');
        if (fname == NULL) {
            wpa_printf(MSG_ERROR,
                "Invalid BSS config identifier '%s'",
                bss_config[i]);
            goto out;
        }
        *fname++ = '\0';
        iface = hostapd_interface_init_bss(&interfaces, bss_config[i],
            fname, debug);
        if (iface == NULL)
            goto out;
        for (j = 0; j < interfaces.count; j++) {
            if (interfaces.iface[j] == iface)
                break;
        }
        if (j == interfaces.count) {
            struct hostapd_iface **tmp;
            tmp = os_realloc_array(interfaces.iface,
                interfaces.count + 1,
                sizeof(struct hostapd_iface *));
            if (tmp == NULL) {
                hostapd_interface_deinit_free(iface);
                goto out;
            }
            interfaces.iface = tmp;
            interfaces.iface[interfaces.count++] = iface;
        }
    }

    /*
    * Enable configured interfaces. Depending on channel configuration,
    * this may complete full initialization before returning or use a
    * callback mechanism to complete setup in case of operations like HT
    * co-ex scans, ACS, or DFS are needed to determine channel parameters.
    * In such case, the interface will be enabled from eloop context within
    * hostapd_global_run().
    */
    interfaces.terminate_on_error = interfaces.count;
    for (i = 0; i < interfaces.count; i++) {
        //根据配置文件设置iface信息
        if (hostapd_driver_init(interfaces.iface[i]) ||
            //将配置文件通过写入驱动          hostapd_setup_interface(interfaces.iface[i]))
            goto out;
    }

    hostapd_global_ctrl_iface_init(&interfaces);
        // hostapd_global_run死循环,接收处理信息
    if (hostapd_global_run(&interfaces, daemonize, pid_file)) {
        wpa_printf(MSG_ERROR, "Failed to start eloop");
        goto out;
    }

    ret = 0;

out:
    hostapd_global_ctrl_iface_deinit(&interfaces);
    /* Deinitialize all interfaces */
    for (i = 0; i < interfaces.count; i++) {
        if (!interfaces.iface[i])
            continue;
        interfaces.iface[i]->driver_ap_teardown =
            !!(interfaces.iface[i]->drv_flags &
                WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
        hostapd_interface_deinit_free(interfaces.iface[i]);
    }
    os_free(interfaces.iface);

    hostapd_global_deinit(pid_file);
    os_free(pid_file);

    if (log_file)
        wpa_debug_close_file();
    wpa_debug_close_linux_tracing();
    os_free(bss_config);
    os_program_deinit();
    return ret;
}

分析:

1)  函数主要分为三部分,第一部是读取命令行参数作相应的处理。

2)  第二部分主要是根据配置文件设置hapd_interface的参数然后通过一系列的函数调用进入内核态设置相应的内核参数。核心代码如下:

首先是通过调用函数hostapd_driver_init获取配置信息保存在iface[i]中,然后通过调用函数hostapd_setup_interface函数将其配置信息写入内核。

for (i = 0; i < interfaces.count; i++) {
        //根据配置文件设置iface信息
        if (hostapd_driver_init(interfaces.iface[i]) ||
            //将配置文件通过写入驱动          hostapd_setup_interface(interfaces.iface[i]))
            goto out;
    }

下面来跟一下写入的过程:

    通过依次调用

hostapd_setup_interface

    ------>setup_interface

        ------>hostapd_set_country

        ------>setup_interface2

            ------>hostapd_setup_interface_complete

                    ------>hostapd_set_freq

                    ------>hostapd_set_rts

------>hostapd_set_state

------>hostapd_tx_queue_para,  

 

通过这几个调用进入netlink层,后面的过程此处不做详解。

全局变量eloop是执行这个死循环的重要结构体,其定义如下所示:

struct eloop_sock {
    int sock;
    void *eloop_data;
    void *user_data;
    eloop_sock_handler handler;
    WPA_TRACE_REF(eloop);
    WPA_TRACE_REF(user);
    WPA_TRACE_INFO
};
struct eloop_sock_table {
    int count;
    struct eloop_sock *table;
#ifdef CONFIG_ELOOP_EPOLL
    eloop_event_type type;
#else /* CONFIG_ELOOP_EPOLL */
    int changed;
#endif /* CONFIG_ELOOP_EPOLL */
};
struct eloop_data {
    int max_sock;

    int count; /* sum of all table counts */
#ifdef CONFIG_ELOOP_POLL
    int max_pollfd_map; /* number of pollfds_map currently allocated */
    int max_poll_fds; /* number of pollfds currently allocated */
    struct pollfd *pollfds;
    struct pollfd **pollfds_map;
#endif /* CONFIG_ELOOP_POLL */
#ifdef CONFIG_ELOOP_EPOLL
    int epollfd;
    int epoll_max_event_num;
    int epoll_max_fd;
    struct eloop_sock *epoll_table;
    struct epoll_event *epoll_events;
#endif /* CONFIG_ELOOP_EPOLL */
    struct eloop_sock_table readers;
    struct eloop_sock_table writers;
    struct eloop_sock_table exceptions;

    struct dl_list timeout;

    int signal_count;
    struct eloop_signal *signals;
    int signaled;
    int pending_terminate;

    int terminate;
};

也就是说其主要定义了reader,wri

首先是对sock timeout 和event三个函数table的初始化,在main中调用函数

hostapd_global_init完成,其代码如下:首先通过调用eloop_init完成了对eloop这个全局变量的初始化。

static int hostapd_global_init(struct hapd_interfaces *interfaces,
    const char *entropy_file)
{
    int i;

    os_memset(&global, 0, sizeof(global));

    hostapd_logger_register_cb(hostapd_logger_cb);

    if (eap_server_register_methods()) {
        wpa_printf(MSG_ERROR, "Failed to register EAP methods");
        return -1;
    }

    if (eloop_init()) {
        wpa_printf(MSG_ERROR, "Failed to initialize event loop");
        return -1;
    }

    random_init(entropy_file);

#ifndef CONFIG_NATIVE_WINDOWS
    eloop_register_signal(SIGHUP, handle_reload, interfaces);
    eloop_register_signal(SIGUSR1, handle_dump_state, interfaces);
#endif /* CONFIG_NATIVE_WINDOWS */
    eloop_register_signal_terminate(handle_term, interfaces);

#ifndef CONFIG_NATIVE_WINDOWS
    openlog("hostapd", 0, LOG_DAEMON);
#endif /* CONFIG_NATIVE_WINDOWS */

    for (i = 0; wpa_drivers[i]; i++)
        global.drv_count++;
    if (global.drv_count == 0) {
        wpa_printf(MSG_ERROR, "No drivers enabled");
        return -1;
    }
    global.drv_priv = os_calloc(global.drv_count, sizeof(void *));
    if (global.drv_priv == NULL)
        return -1;

    return 0;
}

接着是对各个事件的注册,如下所示即为注册socket的函数:

int eloop_register_sock(int sock, eloop_event_type type,

    eloop_sock_handler handler,

    void *eloop_data, void *user_data)

{

    struct eloop_sock_table *table;

 

    assert(sock >= 0);

    table = eloop_get_sock_table(type);

    return eloop_sock_table_add_sock(table, sock, handler,

        eloop_data, user_data);

}

分析代码即为将相应的handler和data放进sock_table表中即可。

最后是在函数hostapd_global_run中死循环来检测socket或者timeout或者event的相关量是否发生变化进而调用相应的提前注册到该事件上的函数。

    其处理socket事件的核心代码如下:将其添加进相应的表中

eloop_sock_table_set_fds(&eloop.readers, rfds);
eloop_sock_table_set_fds(&eloop.writers, wfds);
eloop_sock_table_set_fds(&eloop.exceptions, efds);
res = select(eloop.max_sock + 1, rfds, wfds, efds,
                 timeout ? &_tv : NULL);

最后执行相应的提前注册的函数:

eloop_sock_table_dispatch(&eloop.readers, rfds);
eloop_sock_table_dispatch(&eloop.writers, wfds);
eloop_sock_table_dispatch(&eloop.exceptions, efds);

至此hostapd的基本流程分析完了。

 

posted @ 2016-12-23 14:56  Rosanne  阅读(1851)  评论(0编辑  收藏  举报