算法:优先级队列(PriorityQueue)

背景

此文给出基于已排序数组的实现,多数情况应该基于 Heap 进行实现,因为数组的插入效率为O(n),而 Heap 的插入效率为 Log(n)。

PriorityQueue

代码

  1 using System;
  2 using System.Collections.Generic;
  3 using System.Linq;
  4 using System.Text;
  5 using System.Threading.Tasks;
  6 
  7 namespace DataStuctureStudy.Queues
  8 {
  9     public class PriorityQueue<T>
 10         where T : IComparable<T>
 11     {
 12         private readonly int _maxSize;
 13         private readonly T[] _items;
 14         private int _count = 0;
 15         private int _head = -1;
 16 
 17         public PriorityQueue(int size)
 18         {
 19             _maxSize = size;
 20             _items = new T[size];
 21         }
 22 
 23         public void EnQueue(T item)
 24         {
 25             if (this.IsFull())
 26             {
 27                 throw new InvalidOperationException("队列已满");
 28             }
 29 
 30             if (_count == 0)
 31             {
 32                 _items[++_head] = item;
 33             }
 34             else
 35             {
 36                 _items[++_head] = item;
 37                 for (var i = _head; i >= 1; i++)
 38                 {
 39                     if (_items[i].CompareTo(item) < 0)
 40                     {
 41                         Swap(_items, i - 1, i);
 42                     }
 43                     else
 44                     {
 45                         break;
 46                     }
 47                 }
 48             }
 49 
 50             _count++;
 51         }
 52 
 53         public T DeQueue()
 54         {
 55             if (this.IsEmpty())
 56             {
 57                 throw new InvalidOperationException("队列已空");
 58             }
 59 
 60             T item = _items[_head--];
 61 
 62             _count--;
 63 
 64             return item;
 65         }
 66 
 67         public T Peek()
 68         {
 69             if (this.IsEmpty())
 70             {
 71                 throw new InvalidOperationException("队列已空");
 72             }
 73 
 74             return _items[_head];
 75         }
 76 
 77         public bool IsFull()
 78         {
 79             return _count == _maxSize;
 80         }
 81 
 82         public bool IsEmpty()
 83         {
 84             return _count == 0;
 85         }
 86 
 87         public int Size()
 88         {
 89             return _count;
 90         }
 91 
 92         private static void Swap(T[] items, int left, int right)
 93         {
 94             if (left != right)
 95             {
 96                 var temp = items[left];
 97                 items[left] = items[right];
 98                 items[right] = temp;
 99             }
100         }
101     }
102 }

 

posted on 2013-12-18 17:50  幸福框架  阅读(596)  评论(0编辑  收藏  举报

导航

我要啦免费统计