【算法基础】卡尔曼滤波KF

kalman filter

 

KCF

尺度变化是跟踪中比较基本和常见的问题,前面介绍的三个算法都没有尺度更新,如果目标缩小,滤波器就会学习到大量背景信息,如果目标扩大,滤波器就跟着目标局部纹理走了,这两种情况都很可能出现非预期的结果,导致漂移和失败。

https://blog.csdn.net/wfei101/article/details/79673275

https://www.cnblogs.com/YiXiaoZhou/p/5925019.html

http://www.robots.ox.ac.uk/~joao/circulant/

https://www.cnblogs.com/fx-blog/p/8213704.html

https://blog.csdn.net/crazyice521/article/category/6282914

 https://blog.csdn.net/denghecsdn/article/details/78418748

https://elbauldelprogramador.com/en/how-to-compile-opencv3-nonfree-part-from-source/

 https://github.com/joaofaro/KCFcpp

复制代码
  struct CV_EXPORTS Params
  {
    /**  
    * \brief Constructor
    */
    Params();

    /**  
    * \brief Read parameters from a file
    */
    void read(const FileNode& /*fn*/);

    /**  
    * \brief Write parameters to a file
    */
    void write(FileStorage& /*fs*/) const;

    float detect_thresh;         //!<  detection confidence threshold
    float sigma;                 //!<  gaussian kernel bandwidth
    float lambda;                //!<  regularization
    float interp_factor;         //!<  linear interpolation factor for adaptation
    float output_sigma_factor;   //!<  spatial bandwidth (proportional to target)
    float pca_learning_rate;     //!<  compression learning rate
    bool resize;                  //!<  activate the resize feature to improve the processing speed
    bool split_coeff;             //!<  split the training coefficients into two matrices
    bool wrap_kernel;             //!<  wrap around the kernel values
    bool compress_feature;        //!<  activate the pca method to compress the features
    int max_patch_size;           //!<  threshold for the ROI size
    int compressed_size;          //!<  feature size after compression
    int desc_pca;        //!<  compressed descriptors of TrackerKCF::MODE
    int desc_npca;       //!<  non-compressed descriptors of TrackerKCF::MODE
  };

  /** @brief Constructor
  @param parameters KCF parameters TrackerKCF::Params
  */
  static Ptr<TrackerKCF> create(const TrackerKCF::Params &parameters);
复制代码

 

dlib中自带的correlation_tracker类

http://dlib.net/python/index.html#dlib.correlation_tracker

Danelljan, Martin, et al. ‘Accurate scale estimation for robust visual tracking.’ Proceedings of the British Machine Vision Conference BMVC. 2014.

参考

1.

https://www.cnblogs.com/xmphoenix/p/3634536.html

posted on   鹅要长大  阅读(1005)  评论(0编辑  收藏  举报

编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示