【机器学习算法】AdaBoost自适应提升算法

前言

 AdaBoost的算法步骤比较容易理解,可以参考李航老师的《统计学习方法》和July的blog。

对博主而言,最主要的是迭代部分的第二步骤是如何如何确定阈值呢,也就是说有一个特征就有一个强分类器,n个特征就有n个强分类器,那如果你特别大的话,肯定需要筛选特征,该如何筛选呢;也就是对于多维或者高维特征,如何确定迭代部分要学习的基本分类器,以及如何筛选特征;

 对于AdaBoost算法,迭代几次就产生几个基本分类器,当然基本分类器的个数越多分类精度越高。那么如何确定迭代次数呢?

 

 

参考

1.VJ大神paper1-RobustReal-timeObjectDetection-2001;

2.VJ大神paper3-RobustReal-timeFaceDetection-2003

3.VJ大神paper2-RapidObjecDetectionUsingaBoostedCascadeofSimpleFeatures-2004;

4.CSDN大神July博客

5.FaceDetection的原理解析

6.AdaBoost原理介绍

 

posted on   鹅要长大  阅读(418)  评论(0编辑  收藏  举报

编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
历史上的今天:
2017-10-11 截图工具当前未在计算机运行的问题

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示