opencv-python教程学习系列13-图像平滑

前言

opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像平滑,坚持学习,共同进步。

系列教程参照OpenCV-Python中文教程

系统环境

系统:win7_x64;

python版本:python3.5.2;

opencv版本:opencv3.3.1;

内容安排

1.知识点介绍;

2.测试代码;

具体内容

1.知识点介绍;

 本文主要基于cv2包介绍几种常见的平滑滤波方法,比如2D卷积、均值滤波、高斯模糊、中值滤波、双边滤波。

对于图像的平滑与滤波,但从滤波角度来讲,一般主要目的都是为了实现对图像噪声的消除,增强图像的效果。 图像的滤波可以看成是滤波模板与原始图像对应部分的的卷积运算。

1.1 2D卷积;

对于2D图像可以进行低通或者高通滤波操作,低通滤波(LPF)有利于去噪,模糊图像,高通滤波(HPF)有利于找到图像边界。

Opencv提供的一个通用的2D滤波函数为cv2.filter2D(),滤波函数的使用需要一个核模板,对图像的滤波操作过程为:将核模板放在图像的某个像素上,求与之对应的图像上的每个像素点的和,核不同,得到的结果不同,而滤波的使用核心也是对于这个核模板的使用,需要注意的是,该滤波函数是单通道运算的,也就是说对于彩色图像的滤波,需要将彩色图像的各个通道提取出来,对各个通道分别滤波才行。

1
2
kernel = np.ones((5,5),np.float32)/25
dst = cv2.filter2D(img,-1,kernel)

1.2 均值滤波;

这是由一个归一化卷积框完成的,他只是用卷积框覆盖区域所有像素的平均值来代替中心元素。可以使用cv2.blur()和cv2.boxFilter()来实现, 我们需要设定卷积框的宽和高。同样是一个矩阵。

blur = cv2.blur(img,(5,5))

1.3 高斯模糊

 高斯模糊即是将卷积核换成高斯核,核区域中的数值符合高斯分布,实现的函数是cv2.GaussianBlur(),需要指定高斯核的宽和高(必须是奇数),以及高斯函数沿X,Y方向的标准差。高斯滤波可以有效的从图像中去除高斯噪音,也可以使用cv2.getGaussianKernel()自己构建一个高斯核。

# 0是指根据窗口大小(5,5)来计算高斯函数标准差
blur = cv2.GaussianBlur(img,(5,5),0)

1.4 中值滤波;

中值滤波是使用区域的中值来代替中心像素的值,用来去除椒盐噪声,卷积核的大小是奇数。

blur = cv2.medianBlur(img,5)

1.5 双边滤波;

双边滤波函数为cv2.bilateralFilter()。该滤波器可以在保证边界清晰的情况下有效的去掉噪声即保边去噪。它的构造比较复杂,既考虑了图像的空间关系,也考虑图像的灰度关系。双边滤波同时使用了空间高斯权重和灰度相似性高斯权重,确保了边界不会被模糊掉。具体原理可参考女神博客here

#cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace)
#d – Diameter of each pixel neighborhood that is used during filtering. # If it is non-positive, it is computed from sigmaSpace 
# 9 邻域直径,两个 75 分别是空间高斯函数标准差,灰度值相似性高斯函数标准差 
blur = cv2.bilateralFilter(img,9,75,75)

2. 测试代码;

复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('test.jpg',0) #直接读为灰度图像
for i in range(2000): #添加点噪声
    temp_x = np.random.randint(0,img.shape[0])
    temp_y = np.random.randint(0,img.shape[1])
    img[temp_x][temp_y] = 255

#9---滤波领域直径
#后面两个数字:空间高斯函数标准差,灰度值相似性标准差
blur = cv2.bilateralFilter(img,9,75,75)
plt.subplot(1,2,1),plt.imshow(img,'gray')#默认彩色,另一种彩色bgr
plt.subplot(1,2,2),plt.imshow(blur,'gray')
复制代码

参考

1. 图像平滑

2. 图像平滑与滤波

3. 双边滤波详解

posted on   鹅要长大  阅读(738)  评论(0编辑  收藏  举报

编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示