【CV源码解析】Yolov3-Darknet版本计算mAP、loss/iou曲线

前言

 

VOC中的xml文件

<annotation>
    <folder>VOC2012</folder>                               //文件名
    <filename>2007_000346.jpg</filename>
    <source>                                                //文件来源
        <database>The VOC2007 Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
    </source>
    <size>                                           //文件大小(宽度、高度、通道数)
        <width>500</width>
        <height>375</height>
        <depth>3</depth>
    </size>
    <segmented>1</segmented>                       //是否用于分割
    <object>                                      //检测物体说明
        <name>bottle</name>                         //所检测到的物体
        <pose>Unspecified</pose>                    //拍摄角度(未详细说明)
        <truncated>0</truncated>                     //是否被截断(0代表未被截断)
        <difficult>0</difficult>                     //目标是否难以识别(0代表容易识别)
        <bndbox>                                     //左下和右上坐标
            <xmin>124</xmin>
            <ymin>107</ymin>
            <xmax>230</xmax>
            <ymax>343</ymax>
        </bndbox>
    </object>
    <object>                       //所检测的另一物体
        <name>person</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>137</xmin>
            <ymin>78</ymin>
            <xmax>497</xmax>
            <ymax>375</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Unspecified</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>89</xmin>
            <ymin>202</ymin>
            <xmax>129</xmax>
            <ymax>247</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>72</xmin>
            <ymin>209</ymin>
            <xmax>111</xmax>
            <ymax>259</ymax>
        </bndbox>
    </object>
</annotation>
View Code

其中

<segmented>1</segmented>                       //是否用于分割
    <object>                                      //检测物体说明
        <name>bottle</name>                         //所检测到的物体
        <pose>Unspecified</pose>                    //拍摄角度(未详细说明)
        <truncated>0</truncated>                     //是否被截断(0代表未被截断)
        <difficult>0</difficult>                     //目标是否难以识别(0代表容易识别)
        <bndbox>                                     //左下和右上坐标
            <xmin>124</xmin>
            <ymin>107</ymin>
            <xmax>230</xmax>
            <ymax>343</ymax>
        </bndbox>

 difficult代表是否难以识别,0表示易识别,1表示难识别。通常读取时略过这类;

 

定制数据集计算mAP,需要根据数据集的属性,改写代码;

计算过程:

1) 选择一个类,做ap计算;

2) 对所有图片,该类box的检测,按照预测得分(所有置信度)从大到小排序;

3) 按照这个顺序,计算累计tp, fp, 进而计算累计precision, recall;

4) 然后按照0, 0.1, 0.2 ... 0.9 1.0 ,这11各点,10个区间,得到折线图,然后得到11个顶点,进而计算这11个顶点的平均值,就得到了,这个类的ap;

5) 对所有类,计算ap, 然后对这些ap加和,除以类别数,得到mAP;

比如,所有测试集中计算某类别的AP,有m个gt,n个预测框(置信度+bbox),若:

1)预测框与真实框的IOU大于IOU_T(=0.5,即AP50),则这个样本为真正例TP += 1;

2)如果小于阈值,则没框上的标签框导致 FN += 1,框错的预测框导致FP += 1;

3)准确度是TP/(TP+FP),即正确预测/总预测正例;召回率是TP/nPOS,即正确预测/总真实正例;

在这基础上,使用置信度Score划拉预测框的个数,计算PR曲线上的点,根据曲线下的面积算AP值。

从官方那边抠出来的AP计算代码,代码内部分为voc2007之前的11点计算方法和voc2007之后的方法,目前都已经采用voc2007之后的计算方法。

import os
import numpy as np
# imagesetfile = "../tflu/valid.txt"
# annopath = ""
# imgfile = open(imagesetfile, 'r')
# lines = imgfile.readlines()
# imagename = lines[0].strip()
# print(imagename)
# imagenames = [x.strip() for x in lines]
# # annopath = '{}.xml'
# # annopath.format(imagename)
# 
# # parse_tflu_anno
# annoname = imagename.replace('images', 'labels')
# annoname = annoname.replace('png', 'txt')
# annofile = open(annoname, 'r')
# annolines = annofile.readlines()
# annoline = annolines[0].strip().split(' ')
# clas = tuple(map(int, annoline[0]))
# bbox = tuple(map(float, annoline[1:]))

# det
img_w = 1280
img_h = 720
# tfl_label = {'circle_green':0, 'circle_red':1, 'circle_yellow':2, 'circle_off':3, 'left_green':4, 'left_red':5, 'left_yellow':6, 'left_off':7, 'nomotor_green':8, 'nomotor_red':9, 'nomotor_yellow':10, 'nomotor_off':11}
tfl_label = ['circle_green', 'circle_red', 'circle_yellow', 'circle_off', 'left_green', 'left_red', 'left_yellow', 'left_off', 'nomotor_green', 'nomotor_red', 'nomotor_yellow', 'nomotor_off']
def parse_tflu(filename):
    """
    Parse a TFL u txt file
    anno bbox: xc, yc, w, h
    """
    objects = []
    annofile = open(filename, 'r')
    annolines = annofile.readlines()
    for i, annoline in enumerate(annolines):
        obj_struct = {}
        annoline = annoline.strip().split(' ')
        obj_struct['name'] = tfl_label[tuple(map(int, annoline[0]))[0]]
        bbox = tuple(map(float, annoline[1:]))
        # (xc, yc, w, h) ---> (xmin, ymin, xmax, ymax)
        xmin = (bbox[0] - bbox[2]*0.5) * img_w
        xmax = (bbox[0] + bbox[2]*0.5) * img_w
        ymin = (bbox[1] - bbox[3]*0.5) * img_h
        ymax = (bbox[1] + bbox[3]*0.5) * img_h
        if xmin < 0:
            xmin = 0
        if ymin < 0:
            ymin = 0
        if xmax > img_w-1:
            xmax = img_w-1
        if ymax > img_h-1:
            ymax = img_h-1
        obj_struct['bbox'] = [int(xmin), int(ymin), int(xmax), int(ymax)]
        obj_struct['difficult'] = 0 # 0-easy, 1-difficult
        objects.append(obj_struct)
    return objects

def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

def tfl_eval(detpath, annopath, datasetfile, classname, ovthresh, use_07_metric=False):
    print('tfl eval of class: ', classname)
    imgfile = open(datasetfile, 'r')
    imglines = imgfile.readlines()
    imagenames = [x.strip() for x in imglines]
    # load annots
    recs = {}
    for i, filename in enumerate(imagenames):
        imagename = filename.split('/')[-1].split('.')[-2]
        annofile = filename.replace('images', 'labels')
        annofile = annofile.replace('png', 'txt')
        recs[imagename] = parse_tflu(annofile)
    # extra gt object for this class
    class_recs = {}
    npos = 0
    for i, filename in enumerate(imagenames):
        imagename = filename.split('/')[-1].split('.')[-2]
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        # print('R: ', R)
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        # print('det: {} \t bbox: {}'.format(det, bbox))
        class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det}
    # read dets
    detfile = detpath.format(classname)
    # print('detfile: ', detfile)
    with open(detfile, 'r') as f:
        lines = f.readlines()
    splitlines = [x.strip().split(' ') for x in lines]    
    print('det image len: ', len(splitlines))
    if len(splitlines)==0:
       return 0, 0, 0
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]
    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)
        # print('BBGT: ', len(BBGT))

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) * (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            # print('inters: {} \t uni: {} \n'.format(inters, uni))
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)
            # print('name: {} \n ---overlaps: {} \t ovmax: {} \t jmax: {}\n'.format(image_ids[d], overlaps, ovmax, jmax))

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    # print('before npos: {}\t fp: {}\t, tp: {}'.format(npos, fp, tp))
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    # print('npos: {}\t fp: {}\t, tp: {}'.format(npos, fp, tp))
    if npos>0:
        rec = tp / float(npos)
    else:
        print('********************************************classname: ', classname)
        return 0, 0, 0 
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap

if __name__ == "__main__":
    path = os.getcwd()
    # single class
    detpath = os.path.join(path, '..', 'results/{}.txt')
    annopath = os.path.join(path, '..', 'tflu/valid.txt')
    datasetfile = os.path.join(path, '..', 'tflu/valid.txt')
    thresh = 0.5
    classname = 'circle_green'
    use_07_metric = True
    recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
    # print('use_07_metric: {}\tclassname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(use_07_metric, classname, recall, precision, ap))
    
    # multi class
    resultspath = os.path.join(path, '..', 'results')
    subfiles = os.listdir(resultspath)
    mAP = []
    for i in range(len(subfiles)):
        classname = subfiles[i].split('.txt')[0]
        recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
        # print('classname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(classname, recall, precision, ap))
        mAP.append(ap)
    mAP = tuple(mAP)
    print('AP: {}\nmAP: {}'.format(mAP, float(sum(mAP)/len(mAP))))
    
    print('***************FalseFalse**************************************************')
    use_07_metric = False
    recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
    # print('use_07_metric: {}\tclassname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(use_07_metric, classname, recall, precision, ap))
    
    # multi class
    resultspath = os.path.join(path, '..', 'results')
    subfiles = os.listdir(resultspath)
    mAP = []
    for i in range(len(subfiles)):
        classname = subfiles[i].split('.txt')[0]
        recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
        # print('classname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(classname, recall, precision, ap))
        mAP.append(ap)
    mAP = tuple(mAP)
    print('AP: {}\nmAP: {}'.format(mAP, float(sum(mAP)/len(mAP))))
View Code

对红绿灯的颜色进行评估

 

import os
import numpy as np
# imagesetfile = "../tflu/valid.txt"
# annopath = ""
# imgfile = open(imagesetfile, 'r')
# lines = imgfile.readlines()
# imagename = lines[0].strip()
# print(imagename)
# imagenames = [x.strip() for x in lines]
# # annopath = '{}.xml'
# # annopath.format(imagename)
# 
# # parse_tflu_anno
# annoname = imagename.replace('images', 'labels')
# annoname = annoname.replace('png', 'txt')
# annofile = open(annoname, 'r')
# annolines = annofile.readlines()
# annoline = annolines[0].strip().split(' ')
# clas = tuple(map(int, annoline[0]))
# bbox = tuple(map(float, annoline[1:]))

# det
img_w = 1280
img_h = 720
# tfl_label = {'circle_green':0, 'circle_red':1, 'circle_yellow':2, 'circle_off':3, 'left_green':4, 'left_red':5, 'left_yellow':6, 'left_off':7, 'nomotor_green':8, 'nomotor_red':9, 'nomotor_yellow':10, 'nomotor_off':11}
tfl_label = ['circle_green', 'circle_red', 'circle_yellow', 'circle_off', 'left_green', 'left_red', 'left_yellow', 'left_off', 'nomotor_green', 'nomotor_red', 'nomotor_yellow', 'nomotor_off']
def parse_tflu(filename):
    """
    Parse a TFL u txt file
    anno bbox: xc, yc, w, h
    """
    objects = []
    annofile = open(filename, 'r')
    annolines = annofile.readlines()
    for i, annoline in enumerate(annolines):
        obj_struct = {}
        annoline = annoline.strip().split(' ')
        obj_struct['name'] = tfl_label[tuple(map(int, annoline[0]))[0]]
        bbox = tuple(map(float, annoline[1:]))
        # (xc, yc, w, h) ---> (xmin, ymin, xmax, ymax)
        xmin = (bbox[0] - bbox[2]*0.5) * img_w
        xmax = (bbox[0] + bbox[2]*0.5) * img_w
        ymin = (bbox[1] - bbox[3]*0.5) * img_h
        ymax = (bbox[1] + bbox[3]*0.5) * img_h
        if xmin < 0:
            xmin = 0
        if ymin < 0:
            ymin = 0
        if xmax > img_w-1:
            xmax = img_w-1
        if ymax > img_h-1:
            ymax = img_h-1
        obj_struct['bbox'] = [int(xmin), int(ymin), int(xmax), int(ymax)]
        obj_struct['difficult'] = 0 # 0-easy, 1-difficult
        objects.append(obj_struct)
    return objects

def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

def tfl_eval(detpath, annopath, datasetfile, classname, ovthresh, use_07_metric=False):
    # print('tfl eval of class: ', classname)
    imgfile = open(datasetfile, 'r')
    imglines = imgfile.readlines()
    imagenames = [x.strip() for x in imglines]
    # load annots
    recs = {}
    for i, filename in enumerate(imagenames):
        imagename = filename.split('/')[-1].split('.')[-2]
        annofile = filename.replace('images', 'labels')
        annofile = annofile.replace('png', 'txt')
        recs[imagename] = parse_tfluisee(annofile)
    # extra gt object for this class
    class_recs = {}
    npos = 0
    if classname=='red':
        subname = ['circle_red', 'left_red', 'nomotor_red'] 
    elif classname=='green':
        subname = ['circle_green', 'left_green', 'nomotor_green'] 
    elif classname=='yellow':
        subname = ['circle_yellow', 'left_yellow', 'nomotor_yellow'] 
    for i, filename in enumerate(imagenames):
        imagename = filename.split('/')[-1].split('.')[-2]
        R = [obj for obj in recs[imagename] if obj['name'] in subname]
        # print('R: ', R)
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        # print('det: {} \t bbox: {}'.format(det, bbox))
        class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det}
    # read dets
    splitlines = []
    for i in range(len(subname)):
        detfile = detpath.format(subname[i])
        # print('detfile: ', detfile)
        with open(detfile, 'r') as f:
            lines = f.readlines()
            splitlines += [x.strip().split(' ') for x in lines]  
        # print('det image len: ', len(splitlines))
    # print('det image len all**********************: ', len(splitlines))
    if len(splitlines)==0:
       return 0, 0, 0
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]
    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)
        # print('BBGT: ', len(BBGT))

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) * (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            # print('inters: {} \t uni: {} \n'.format(inters, uni))
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)
            # print('name: {} \n ---overlaps: {} \t ovmax: {} \t jmax: {}\n'.format(image_ids[d], overlaps, ovmax, jmax))

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    # print('before npos: {}\t fp: {}\t, tp: {}'.format(npos, fp, tp))
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    # print('npos: {}\t fp: {}\t, tp: {}'.format(npos, fp, tp))
    if npos>0:
        rec = tp / float(npos)
    else:
        # print('********************************************classname: ', classname)
        return 0, 0, 0 
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap

if __name__ == "__main__":
    path = os.getcwd()
    # single class
    detpath = os.path.join(path, '..', 'results/{}.txt')
    annopath = os.path.join(path, '..', 'tflu/valid.txt')
    datasetfile = os.path.join(path, '..', 'tflu/valid.txt')
    thresh = 0.45
    classname = 'red'
    use_07_metric = True
    print('thresh: {}\t use_07_metric: {}'.format(thresh, use_07_metric))
    recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
    # print('use_07_metric: {}\tclassname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(use_07_metric, classname, recall, precision, ap))
    
    # multi class
    resultspath = os.path.join(path, '..', 'results')
    subfiles = os.listdir(resultspath)
    mAP = []
    color = ['red', 'green', 'yellow']
    for i in range(len(color)):
        # classname = subfiles[i].split('.txt')[0]
        classname = color[i]
        recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
        # print('classname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(classname, recall, precision, ap))
        mAP.append(ap)
    mAP = tuple(mAP)
    print('AP: {}\nmAP: {}'.format(mAP, float(sum(mAP)/len(mAP))))
    
    # use_07_metric = False
    # print('thresh: {}\t use_07_metric: {}'.format(thresh, use_07_metric))
    # recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
    # # print('use_07_metric: {}\tclassname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(use_07_metric, classname, recall, precision, ap))
    # 
    # # multi class
    # resultspath = os.path.join(path, '..', 'results')
    # subfiles = os.listdir(resultspath)
    # mAP = []
    # for i in range(len(subfiles)):
    #     classname = subfiles[i].split('.txt')[0]
    #     recall, precision, ap = tfl_eval(detpath, annopath, datasetfile, classname, thresh, use_07_metric)
    #     # print('classname: {}\t recall:{}\t precision: {}\t ap: {}\t'.format(classname, recall, precision, ap))
    #     mAP.append(ap)
    # mAP = tuple(mAP)
    # print('AP: {}\nmAP: {}'.format(mAP, float(sum(mAP)/len(mAP))))
View Code

 

需要更改类别相关的代码;

Interplolated AP(Pascal Voc 2008 的AP计算方式)
Area under curve
COCO mAP

update20220804  生成loss-iter曲线

./darknet detector train cfg/voc.data cfg/yolo-voc.cfg | tee training.log
python  drawcurve.py training.log 0

drawcurve.py 

# https://www.jianshu.com/p/7ae10c8f7d77/

# yolov3-tiny-lisa
# Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005
# Resizing
# 320
# Loaded: 0.000268 seconds
# Region 16 Avg IOU: 0.000000, Class: 0.724076, Obj: 0.605353, No Obj: 0.447358, .5R: 0.000000, .75R: 0.000000,  count: 8
# Region 23 Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.499357, .5R: -nan, .75R: -nan,  count: 0
# 1: 223.108368, 223.108368 avg, 0.000000 rate, 0.100259 seconds, 1 images
# Loaded: 0.000114 seconds
import argparse
import sys
import matplotlib.pyplot as plt
def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument("log_file",  help = "path to log file"  )
    parser.add_argument( "option", help = "0 -> loss vs iter"  )
    args = parser.parse_args()
    f = open(args.log_file)
    lines  = [line.rstrip("\n") for line in f.readlines()]
    # skip the first 3 lines
    lines = lines[3:]
    numbers = {'1','2','3','4','5','6','7','8','9','0'}
    iters = []
    loss = []
    for line in lines:
        # print("line[0]: {}\t{}\t{}\n".format(line[0], len(line), line))
        if line[0] in numbers:
            args = line.split(" ")
            # print("len: {}\t {}\n".format(len(args), args))
            if len(args) >3:
                # print("iters: {}\t loss: {}\n".format(args[0][:-1], args[2]))
                iters.append(int(args[0][:-1]))
                loss.append(float(args[2]))
    plt.plot(iters,loss)
    plt.xlabel('iters')
    plt.ylabel('loss')
    plt.grid()
    plt.show()
if __name__ == "__main__":
    main(sys.argv)
View Code

update20220810  生成iou/loss曲线

drawlog.py

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import logging
 
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s %(levelname)s: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
 
 
class Yolov3LogVisualization:
 
    def __init__(self, log_path, result_dir):
 
        self.log_path = log_path
        self.result_dir = result_dir
 
    def extract_log(self, save_log_path, key_word):
        with open(self.log_path, 'r') as f:
            with open(save_log_path, 'w') as train_log:
                next_skip = False
                for line in f:
                    if next_skip:
                        next_skip = False
                        continue
                    # 去除多gpu的同步log
                    if 'Syncing' in line:
                        continue
                    # 去除除零错误的log
                    if 'nan' in line:
                        continue
                    if 'Saving weights to' in line:
                        next_skip = True
                        continue
                    if key_word in line:
                        train_log.write(line)
        f.close()
        train_log.close()
 
    def parse_loss_log(self, log_path, line_num=2000):
        # 用于设置忽略前多少步,上千几百的太大了,所以从几一下开始。 
        result = pd.read_csv(log_path,skiprows=[x for x in range(line_num) if (x<1500)],
                             error_bad_lines=False, names=['loss', 'avg', 'rate', 'seconds', 'images'])
        result['loss'] = result['loss'].str.split(' ').str.get(1)
        result['avg'] = result['avg'].str.split(' ').str.get(1)
        result['rate'] = result['rate'].str.split(' ').str.get(1)
        result['seconds'] = result['seconds'].str.split(' ').str.get(1)
        result['images'] = result['images'].str.split(' ').str.get(1)
 
        result['loss'] = pd.to_numeric(result['loss'])
        result['avg'] = pd.to_numeric(result['avg'])
        result['rate'] = pd.to_numeric(result['rate'])
        result['seconds'] = pd.to_numeric(result['seconds'])
        result['images'] = pd.to_numeric(result['images'])
        return result
 
    def gene_loss_pic(self, pd_loss):
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        ax.plot(pd_loss['avg'].values, label='avg_loss')
        ax.legend(loc='best')
        ax.set_title('The loss curves')
        ax.set_xlabel('batches')
        fig.savefig(self.result_dir + '/avg_loss')
        logger.info('save iou loss done')
 
    def loss_pic(self):
        train_log_loss_path = os.path.join(self.result_dir, 'train_log_loss.txt')
        self.extract_log(train_log_loss_path, 'images')
        pd_loss = self.parse_loss_log(train_log_loss_path)
        self.gene_loss_pic(pd_loss)
 
    def parse_iou_log(self, log_path, line_num=2000):
        result = pd.read_csv(log_path, skiprows=[x for x in range(line_num) if (x % 10 == 0 or x % 10 == 9)],
                             error_bad_lines=False,
                             names=['Region Avg IOU', 'Class', 'Obj', 'No Obj', 'Avg Recall', 'count'])
        result['Region Avg IOU'] = result['Region Avg IOU'].str.split(': ').str.get(1)
        result['Class'] = result['Class'].str.split(': ').str.get(1)
        result['Obj'] = result['Obj'].str.split(': ').str.get(1)
        result['No Obj'] = result['No Obj'].str.split(': ').str.get(1)
        result['Avg Recall'] = result['Avg Recall'].str.split(': ').str.get(1)
        result['count'] = result['count'].str.split(': ').str.get(1)
 
        result['Region Avg IOU'] = pd.to_numeric(result['Region Avg IOU'])
        result['Class'] = pd.to_numeric(result['Class'])
        result['Obj'] = pd.to_numeric(result['Obj'])
        result['No Obj'] = pd.to_numeric(result['No Obj'])
        result['Avg Recall'] = pd.to_numeric(result['Avg Recall'])
        result['count'] = pd.to_numeric(result['count'])
        return result
 
    def gene_iou_pic(self, pd_loss):
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        ax.plot(pd_loss['Region Avg IOU'].values, label='Region Avg IOU')
        # ax.plot(result['Class'].values,label='Class')
        # ax.plot(result['Obj'].values,label='Obj')
        # ax.plot(result['No Obj'].values,label='No Obj')
        # ax.plot(result['Avg Recall'].values,label='Avg Recall')
        # ax.plot(result['count'].values,label='count')
        ax.legend(loc='best')
        ax.set_title('The Region Avg IOU curves')
        ax.set_xlabel('batches')
        fig.savefig(self.result_dir + '/region_avg_iou')
        logger.info('save iou pic done')
 
    def iou_pic(self):
        train_log_loss_path = os.path.join(self.result_dir, 'train_log_iou.txt')
        self.extract_log(train_log_loss_path, 'IOU')
        pd_loss = self.parse_iou_log(train_log_loss_path)
        self.gene_iou_pic(pd_loss)
 
 
if __name__ == '__main__':
    log_path = '../train_tfl0808.txt'
    result_dir = '../log_analysis'
    logVis = Yolov3LogVisualization(log_path, result_dir)
    logVis.loss_pic()
    logVis.iou_pic()
View Code

结果如下:

    

 如图所示,avg_loss一直在下降,avg_iou也在逐渐接近于1.

参考

1. Yolov3-Darknet版本计算mAP

2. 深度学习中的AP和mAP总结

3. voc2012中xml文档代码简单说明

4. 目标检测中的AP,mAP;

5. voc_eval;

6. Darknet 评估训练好的网络的性能

7. Ubuntu16.04下实现darknet-yolov3训练自己的数据(含loss图、mAP计算)

8. Python下通过PR曲线值计算AP

posted on 2022-07-25 18:39  鹅要长大  阅读(683)  评论(0编辑  收藏  举报

导航