【tensorflow-v2.0】如何查看模型的输入输出流的属性
操作过程:
1. 查看mobilenet的variables
loaded = tf.saved_model.load('mobilenet') print('MobileNet has {} trainable variables: {},...'.format( len(loaded.trainable_variables), ', '.join([v.name for v in loaded.trainable_variables[:5]]))) trainable_variable_ids = {id(v) for v in loaded.trainable_variables} non_trainable_variables = [v for v in loaded.variables if id(v) not in trainable_variable_ids] print('MobileNet also has {} non-trainable variables: {}, ...'.format( len(non_trainable_variables), ', '.join([v.name for v in non_trainable_variables[:3]])))
输出:输出trainable_variables的后5个variables,non_trainable_variables的后3个variables.
MobileNet has 83 trainable variables: conv1/kernel:0, conv1_bn/gamma:0, conv1_bn/beta:0, conv_dw_1/depthwise_kernel:0, conv_dw_1_bn/gamma:0,... MobileNet also has 54 non-trainable variables: conv1_bn/moving_mean:0, conv1_bn/moving_variance:0, conv_dw_1_bn/moving_mean:0, ...
但是这种方法输出model/detector模型的variables却出错;
Traceback (most recent call last): File "inspect_saved_model.py", line 59, in <module> len(facebox_model.trainable_variables), AttributeError: '_UserObject' object has no attribute 'trainable_variables'
原因还没找出来,有知道的可以私信博主哈~
2. 使用命令行查看模型的signatures
usage: saved_model_cli show [-h] --dir DIR [--all] [--tag_set TAG_SET] [--signature_def SIGNATURE_DEF_KEY]
例如
saved_model_cli show --dir mobilenet/ --all
or saved_model_cli show --dir model/detector/ --tag_set serve --signature_def serving_default
输出
(tf_test) ~/workspace/test_code/github_test/faceboxes-tensorflow$ saved_model_cli show --dir model/detector --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']: The given SavedModel SignatureDef contains the following input(s): The given SavedModel SignatureDef contains the following output(s): outputs['__saved_model_init_op'] tensor_info: dtype: DT_INVALID shape: unknown_rank name: NoOp Method name is: signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['images'] tensor_info: dtype: DT_FLOAT shape: (-1, -1, -1, -1) name: serving_default_images:0 The given SavedModel SignatureDef contains the following output(s): outputs['boxes'] tensor_info: dtype: DT_FLOAT shape: (-1, 100, 4) name: StatefulPartitionedCall:0 outputs['num_boxes'] tensor_info: dtype: DT_INT32 shape: (-1) name: StatefulPartitionedCall:1 outputs['scores'] tensor_info: dtype: DT_FLOAT shape: (-1, 100) name: StatefulPartitionedCall:2 Method name is: tensorflow/serving/predict
这个是model/detector模型的输出;
参考
1. tensorflow1.x;
2. tf_saved_model;
完
各美其美,美美与共,不和他人作比较,不对他人有期待,不批判他人,不钻牛角尖。
心正意诚,做自己该做的事情,做自己喜欢做的事情,安静做一枚有思想的技术媛。
版权声明,转载请注明出处:https://www.cnblogs.com/happyamyhope/
心正意诚,做自己该做的事情,做自己喜欢做的事情,安静做一枚有思想的技术媛。
版权声明,转载请注明出处:https://www.cnblogs.com/happyamyhope/