【err】tensorflow.python.framework.errors_impl.OutOfRangeError: RandomShuffleQueue

problem

复制代码
Traceback (most recent call last):
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1356, in _do_call
    return fn(*args)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1341, in _run_fn
    options, feed_dict, fetch_list, target_list, run_metadata)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1429, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.OutOfRangeError: RandomShuffleQueue '_0_shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 10, current size 0)
     [[{{node shuffle_batch}}]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "test_TFRecord.py", line 46, in <module>
    print(sess.run(label_batch))
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 950, in run
    run_metadata_ptr)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1173, in _run
    feed_dict_tensor, options, run_metadata)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1350, in _do_run
    run_metadata)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1370, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.OutOfRangeError: RandomShuffleQueue '_0_shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 10, current size 0)
     [[node shuffle_batch (defined at test_TFRecord.py:34) ]]

Original stack trace for 'shuffle_batch':
  File "test_TFRecord.py", line 34, in <module>
    num_threads=7)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py", line 324, in new_func
    return func(*args, **kwargs)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/training/input.py", line 1348, in shuffle_batch
    name=name)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/training/input.py", line 875, in _shuffle_batch
    dequeued = queue.dequeue_many(batch_size, name=name)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/ops/data_flow_ops.py", line 488, in dequeue_many
    self._queue_ref, n=n, component_types=self._dtypes, name=name)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 3862, in queue_dequeue_many_v2
    timeout_ms=timeout_ms, name=name)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
    op_def=op_def)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
    return func(*args, **kwargs)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 3616, in create_op
    op_def=op_def)
  File "/home/xxx/anaconda3/envs/mtcnn_tfgpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 2005, in __init__
    self._traceback = tf_stack.extract_stack()
复制代码

 code

复制代码
# -*- coding: utf-8 -*-
"""
@author: friedhelm

"""
import tensorflow as tf
img_size = 12
filename_queue = tf.train.string_input_producer(["/home/xxx/workspace/test_code/github_test/MTCNN-tensorflow/version_1_0/DATA/12/neg_12_train.tfrecords"],shuffle=True,num_epochs=10)

reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件

features = tf.parse_single_example(serialized_example,
                               features={
                               'img':tf.FixedLenFeature([],tf.string),
                               'label':tf.FixedLenFeature([],tf.int64),
                               'roi':tf.FixedLenFeature([4],tf.float32),
                               'landmark':tf.FixedLenFeature([10],tf.float32),
                               })
img=tf.decode_raw(features['img'],tf.uint8)
label=tf.cast(features['label'],tf.int64)
roi=tf.cast(features['roi'],tf.float32)
landmark=tf.cast(features['landmark'],tf.float32)
# img = tf.reshape(img, [48,48,3])   
img = tf.reshape(img, [img_size,img_size,3])
#     img=img_preprocess(img)
min_after_dequeue = 1000  # 10000
batch_size = 10  # 64
capacity = min_after_dequeue + 10 * batch_size
image_batch, label_batch, roi_batch, landmark_batch = tf.train.shuffle_batch([img,label,roi,landmark],
                                                    batch_size=batch_size,
                                                    capacity=capacity,
                                                    min_after_dequeue=min_after_dequeue,
                                                    num_threads=7)


i=0
with tf.Session() as sess:
    sess.run((tf.global_variables_initializer(),
              tf.local_variables_initializer()))
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess,coord=coord)
    while(1):
        i=i+1
        if(i%9==1):
            print(sess.run(label_batch))
View Code
复制代码

why?

 解决方法:详见here;

posted on   鹅要长大  阅读(1826)  评论(0编辑  收藏  举报

编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
历史上的今天:
2018-10-08 【图像处理】快速计算积分图
2018-10-08 【图像处理】Haar-like特征

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示