SDM(Supervised Descent Method and its Applications to Face Alignment )

 sdm

复制代码
SDM 人脸对齐的核心内容很简单,就是特征到偏移量的映射:
                                          Ix = R
I 是特征,x是映射矩阵,R是偏移量。SDM人脸对齐方法训练的目的就是得到映射矩阵x,步骤如下:
      1)归一化样本,使样本的尺度统一;
      2)计算均值人脸;
      3)将均值人脸,作为估计人脸放在样本上,使均值中心和原始人脸形状中心对齐;
      4)计算基于每一个均值人脸的标记点的特征,sift,surf或者hog,切记不要基于灰度值的相互特征;
      5)将所有点的特征串在一起,形成样本特征,所有样本特征形成矩阵I;
      6)计算估计人脸和真实人脸之间的偏移量,并形成矩阵R;
      7)解线性方程Ix=R, matlab中可用x = I \ R,lapack中可用函数dgelsd。
估计形状加上预测偏移量就是结果,在实际情况中,共需要训练多层,二层以后需要使用上一层对齐的结果作为估计形状。
      实际在运用过程中可能会遇到各种问题,总结下来有以下几点:
      1)速度太慢,尤其是使用sift,surf特征;
      2)无效,基于灰度值类的特征由于在标记点周围的小窗口内,灰度值基本一致,变化不大,这也是人脸的一个显著特征;
      3)效果有待提高,hog特征有效的解决上述问题,但是始终不理想,尤其是,水平大角度偏转。
复制代码

 

 

re

1. CSDN_newbee

2. SDM_pdf;

3. github;

4. author_homepage;

5. github-patrikhuber;

6. materials;

7. matlab_code;

8. Derive;

9. 106points;

end

 

posted on   鹅要长大  阅读(760)  评论(0编辑  收藏  举报

编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
历史上的今天:
2017-12-27 opencv-python教程学习系列12-图像阈值
2017-12-27 opencv-python教程学习系列11-几何变换
2017-12-27 opencv-python教程学习系列10-颜色空间转换
2017-12-27 opencv-python教程学习系列9-程序性能检测及优化
2017-12-27 opencv-python教程学习系列8-opencv图像算术运算
2017-12-27 opencv-python教程学习系列7-opencv图像基本操作
2017-12-27 opencv-python教程学习系列6-用滑动条做调色板

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示