题解 POJ3709 【K-Anonymous Sequence】

题目链接:Link

Problem

Solution

题意是给你一个n长度递增数列,将其分组,每组不少于m个,每组的cost是每组中所有元素减去里面最小元素的值的总和,要求你算最小的cost。
显然可以用dp完成。

\[f(i) = \min\limits_{0 \le j \le i-m } \{ f(j)+\sum \limits_{k=j+1}^{i} ( a_k - a_{j+1} ) \} \]

处理后得:

\[f_j - s_j +j * a_{j+1} = i * a_{j+1} + f_i - s_i \]

分析得:

  • 需要维护下凸壳
  • $ a_{j+1} $ 单调增
  • i 单调增

故可用单调队列维护。
注意:决策j是有限制的,须特殊处理。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=500005;
int T,n,m,Q[maxn],L,R;
LL a[maxn],s[maxn],f[maxn],X[maxn],Y[maxn];
int main()
{
	#ifdef local
	freopen("pro.in","r",stdin);
	#endif
	scanf("%d",&T);
	while(T-->0)
	{
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
		for(int i=1;i<=n;i++) s[i]=s[i-1]+a[i];
		Q[L=R=1]=0;
		X[0]=1;
		for(int i=m;i<=2*m-1&&i<=n;i++)
		{
			f[i]=s[i]-i*a[1];
			X[i]=a[i+1];
			Y[i]=f[i]-s[i]+i*a[i+1];
		}
		for(int i=2*m;i<=n;i++)
		{
			int p=i-m;
			while(L<R&&(Y[Q[R]]-Y[Q[R-1]])*(X[p]-X[Q[R-1]])>=(Y[p]-Y[Q[R-1]])*(X[Q[R]]-X[Q[R-1]])) R--;
			Q[++R]=p;
			while(L<R&&(Y[Q[L+1]]-Y[Q[L]])<=i*(X[Q[L+1]]-X[Q[L]])) L++;
			int j=Q[L];
			f[i]=f[j]+s[i]-s[j]-(i-j)*a[j+1];
			X[i]=a[i+1];
			Y[i]=f[i]-s[i]+i*a[i+1];
		}
		printf("%lld\n",f[n]);
	}
	return 0;
}
posted @ 2019-10-07 11:24  happyZYM  阅读(151)  评论(0编辑  收藏  举报