题解 UVA1298 【Triathlon】
题目链接:Link
Solution
这题的主要思想就是数形结合。设比赛总长度为1,其中游泳长度为x,自行车长度为y,赛跑长度为 1-x-y,则选手i打败选手j(非并列)的条件是 \(\dfrac{x}{v_i}+\dfrac{y}{u_i}+\dfrac{1-x-y}{w_i}<\dfrac{x}{v_j}+\dfrac{y}{u_j}+\dfrac{1-x-y}{w_j}\)
可以把它整理成 Ax+By+C>0的形式,其中
A=$ (\dfrac{1}{v_j}-\dfrac{1}{w_j})-(\dfrac{1}{v_i}-\dfrac{1}{w_i}) $
B=$ (\dfrac{1}{u_j}-\dfrac{1}{w_j})-(\dfrac{1}{u_i}-\dfrac{1}{w_i}) $
C=$ \dfrac{1}{w_j}-\dfrac{1}{w_i} $
则得到的所有半平面的并就是合法的解,可以由此判断是否能夺冠。
贴代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
struct Point
{
double x,y;
Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
inline Vector operator+(const Vector &A,const Vector &B)
{ return Vector(A.x+B.x,A.y+B.y); }
inline Vector operator-(const Point &a,const Point &b)
{ return Vector(a.x-b.x,a.y-b.y); }
inline Vector operator*(const Vector &A,double p)
{ return Vector(A.x*p,A.y*p); }
inline Vector operator/(const Vector &A,double p)
{ return Vector(A.x/p,A.y/p); }
inline bool operator<(const Point &a,const Point &b)
{ return a.x<b.x||(a.x==b.x&&a.y<b.y); }
const double ops=1e-10;
inline int dcmp(double x)
{ return (x>0?x:-x)<ops?0:(x>0?1:-1); }
inline bool operator==(const Point &a,const Point &b)
{ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; }
inline double Dot(const Vector &A,const Vector &B)
{ return A.x*B.x+A.y*B.y; }
inline double Length(const Vector &A)
{ return sqrt(Dot(A,A)); }
inline double Cross(const Vector &A,const Vector &B)
{ return A.x*B.y-A.y*B.x; }
inline Vector Normal(const Vector &A)
{
double L=Length(A);
return Vector(-A.y/L,A.x/L);
}
struct Line
{
Point P;
Vector v;
double ang;
Line(Point P=Point(),Vector v=Vector()):P(P),v(v) { ang=atan2(v.y,v.x); }
inline bool operator<(const Line &L) const
{ return ang<L.ang; }
};
inline bool OnLeft(const Line &L,const Point &p)
{ return dcmp(Cross(L.v,p-L.P))>0; }
Point GetLineIntersection(const Line &a,const Line &b)
{
Vector u=a.P-b.P;
double t=Cross(b.v,u)/Cross(a.v,b.v);
return a.P+a.v*t;
}
int HalfplaneIntersection(Line *L,int n)
{
sort(L,L+n);
int first,last;
Point *p=new Point[n];
Line *q=new Line[n];
q[first=last=0]=L[0];
for(int i=1;i<n;i++)
{
while(first<last&&!OnLeft(L[i],p[last-1])) last--;
while(first<last&&!OnLeft(L[i],p[first])) first++;
q[++last]=L[i];
if(dcmp(Cross(q[last].v,q[last-1].v))==0)
{
last--;
if(OnLeft(q[last],L[i].P)) q[last]=L[i];
}
if(first<last) p[last-1]=GetLineIntersection(q[last-1],q[last]);
}
while(first<last&&!OnLeft(q[first],p[last-1])) last--;
if(last-first<=1) return 0;
p[last]=GetLineIntersection(q[last],q[first]);
return max(last-first+1,0);
}
const int maxn=110;
const double k=10000;
Point poly[maxn];
Line L[maxn];
int n;
int V[maxn],U[maxn],W[maxn];
int main()
{
#ifdef local
freopen("pro.in","r",stdin);
#endif
while(scanf("%d",&n)==1&&n)
{
for(int i=0;i<n;i++) scanf("%d%d%d",&V[i],&U[i],&W[i]);
for(int i=0;i<n;i++)
{
int lc=0,ok=1;
for(int j=0;j<n;j++)
if(i!=j)
{
if(V[i]<=V[j]&&U[i]<=U[j]&&W[i]<=W[j]) { ok=0; break; }
if(V[i]>=V[j]&&U[i]>=U[j]&&W[i]>=W[j]) continue;
double a=(k/V[j]-k/W[j])-(k/V[i]-k/W[i]);
double b=(k/U[j]-k/W[j])-(k/U[i]-k/W[i]);
double c=k/W[j]-k/W[i];
Point P;
Vector v(b,-a);
if(fabs(a)>fabs(b)) P=Point(-c/a,0);
else P=Point(0,-c/b);
L[lc++]=Line(P,v);
}
if(ok)
{
L[lc++]=Line(Point(0,0),Vector(0,-1));
L[lc++]=Line(Point(0,0),Vector(1,0));
L[lc++]=Line(Point(0,1),Vector(-1,1));
if(!HalfplaneIntersection(L,lc)) ok=0;
}
printf("%s\n",ok?"Yes":"No");
}
}
return 0;
}
本作品由happyZYM采用知识共享 署名-非商业性使用-相同方式共享 4.0 (CC BY-NC-SA 4.0) 国际许可协议(镜像(简单版)镜像(完整版))进行许可。
转载请注明出处:https://www.cnblogs.com/happyZYM/p/11380170.html (近乎)全文转载而非引用的请在文首添加出处链接。