题解 UVA10457
题目大意:另s = 路径上的最大边权减最小边权,求u到v上的一条路径,使其s最小,输出这个s。
很容易想到枚举最小边然后跑最小瓶颈路。
so,如何跑最小瓶颈路?
利用Kruskal,因为树上两点路径唯一,而且我们是从小到大枚举边,所以如果一条边加入后u v联通,那么它一定是u到v路径上的最长边。
附上丑陋的代码
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
struct EDGE{
int u, v, w;
}edge[2000];
int fa[300], n, m;
bool cmp(const EDGE& x, const EDGE& y)
{
return x.w < y.w;
}
int find_root(int x)
{
return x == fa[x] ? x : fa[x] = find_root(fa[x]);
}
bool same(int x, int y)
{
x = find_root(x),
y = find_root(y);
return x == y;
}
bool merge(int x, int y)
{
x = find_root(x),
y = find_root(y);
fa[x] = y;
return x != y;
}
int kru(int u, int v)
{
int ans = 0x3fffffff;
for (int i = 1; i <= m; ++i)
{
for (int j = 1; j <= n; ++j)
fa[j] = j;
for (int j = i; j <= m; ++j)
if (merge(edge[j].u, edge[j].v) && same(u, v))
ans = min(ans, edge[j].w - edge[i].w);
}
return ans;
}
int main()
{
int u, v, w, ans, k;
while (~scanf("%d%d", &n, &m))
{
for (int i = 1; i <= m; ++i)
{
scanf("%d%d%d", &u, &v, &w);
edge[i] = {u, v, w};
}
sort(edge + 1, edge + 1 + m, cmp);
scanf("%d%d", &u, &v);
ans = u + v;
scanf("%d", &k);
for (int i = 1; i <= k; ++i)
{
scanf("%d%d", &u, &v);
printf("%d\n", ans + kru(u, v));
}
}
return 0;
}