stanford coursera 机器学习编程作业 exercise 3(使用神经网络 识别手写的阿拉伯数字(0-9))

本作业使用神经网络(neural networks)识别手写的阿拉伯数字(0-9)

关于使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),请参考:http://www.cnblogs.com/hapjin/p/6085278.html

 

由于逻辑回归是线性分类(它的假设函数是一个线性函数,就是划一条直线,把数据分成了两类。可参考这篇文章中的:②使用逻辑回归来实现多分类问题(one-vs-all) 部分 的图片)

对于一些复杂的类别,逻辑回归就解决不了了。比如下面这个图片中的分类。(无法通过 划直线 将 叉叉 和 圆圈 分开)

 

而神经网络,则能够实现很复杂的非线性分类问题。

对于神经网络而言,同样有一个训练样本矩阵 X,同时还有一个模型参数 Theta 矩阵,通过某种算法将 模型参数矩阵 训练好之后(求出 Theta 矩阵),再使用前向传播算法( feedforward propagation algorithm)(感觉就像是矩阵相乘嘛), 就可以对输入的测试样本进行预测了。

本作业中, 模型参数 Theta 矩阵是已经训练好了的,直接 load 到Matlab中即可。

 

 

整个Matlab实现代码如下:predict.m

 

function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
%   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
%   trained weights of a neural network (Theta1, Theta2)

% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);

% You need to return the following variables correctly 
p = zeros(size(X, 1), 1);% p 是 5000*1向量

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned neural network. You should set p to a 
%               vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
%       function can also return the index of the max element, for more
%       information see 'help max'. If your examples are in rows, then, you
%       can use max(A, [], 2) to obtain the max for each row.
%
% 模拟实现前向传播算法
X = [ones(m, 1) X];
a_super_2 = sigmoid(Theta1 * X');
a_super_2 = [ones(1,m); a_super_2];% add bias unit
a_super_3 = sigmoid(Theta2 * a_super_2);
%==================================
[~,p] = max( a_super_3' ,[], 2 ); % 对样本的结果进行预测,与逻辑回归的预测类似,选取输出的最大值 作为最终的预测结果

% =========================================================================

end

 注意:我们正是通过Matlab 的 max 函数,求得矩阵 a_super3 每一行的最大值。将每一行的中的最大值 的索引 赋值给向量p。其中,a_super3 是一个5000行乘10列的矩阵 

向量p就是预测的结果向量。而由于 a_super3 有10列,故 p 中每个元素的取值范围为[1,10],即分别代表了数字 0-9(其中10 表示 0)

 

Matlab 实现结果:

Loading Saved Neural Network Parameters ...

Training Set Accuracy: 97.520000

 

比如对于下面的输入:数字 9

 

Neural NetWork的预测结果如下:

 

posted @ 2016-11-21 19:48  大熊猫同学  阅读(4563)  评论(3编辑  收藏  举报