Fork me on GitHub

【Java并发】基础

一、概述

1.1 线程与进程区别

  • 进程就是程序的一次执行过程,是系统运行程序的基本单位,进程是动态的。系统运行一个程序就是一个进程从创建、运行到消亡的过程
  • 在Java中,当我们启动main函数的时候就是启动了一个JVM进程,而main函数所在的线程就是这个进程中的一个线程。
  • 每个正在系统上运行的程序都是一个进程。每个进程包含一到多个线程。线程是一组指令的集合,或者是程序的特殊段,它可以在程序里独立执行。也可以把它理解为代码运行的上下文。所以线程基本上是轻量级的进程,它负责在单个程序里执行多任务。通常由操作系统负责多个线程的调度和执行。
  • 使用线程可以把占据时间长的程序中的任务放到后台去处理,程序的运行速度可能加快,在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下可以释放一些珍贵的资源如内存占用等等。
  • 如果有大量的线程,会影响性能,因为操作系统需要在它们之间切换,更多的线程需要更多的内存空间,线程的中止需要考虑其对程序运行的影响。通常块模型数据是在多个线程间共享的,需要防止线程死锁情况的发生。
  • 总结:进程是所有线程的集合,每一个线程是进程中的一条执行路径。

1.2 多线程引发的性能问题

  • 消耗时间,线程的创建和销毁都需要时间,如果有大量的线程进行创建和销毁,那么这些时间的消耗会比较明显,导致性能上的缺失
  • 非常的消耗CPU和内存:大量的线程创建、执行和销毁是非常的消耗cpu和内存的,这将直接影响系统的吞吐量,导致性能急剧下降,如果内存资源占用的比较多,还很可能造成OOM
  • 容易导致GC频繁的执行:大量的线程的创建和销毁很容易导致GC频繁的执行,从而发生内存抖动现象,而发生了内存抖动,对于移动端来说,最大的影响就是造成界面卡顿
  • 而针对上述所描述的问题,解决的办法归根到底就是:重用已有的线程,从而减少线程的创建。所以这就涉及到线程池(ExecutorService)的概念了,线程池的基本作用就是进行线程的复用。关于线程池的知识,以后再整理

二、多线程创建方式

2.1 第一种-继承Thread类

代码如下:

//1. 继承thread类,重写run方法,run方法中,需要线程执行代码
class ThreadDemo01 extends Thread {
    // run方法中,需要线程需要执行代码
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.print("子线程id:" + this.getId() + ",");
            System.out.print("子线程name:" + getName()+",");
            System.out.println("子线程--->i:" + i);
        }
    }

}
// 1.什么是线程 线程是一条执行路径,每个线程都互不影响。
// 2.什么是多线程,多线程在一个进程中,有多条不同的执行路径,并行执行。目的为了提高程序效率。
// 3.在一个进程中,一定会主线程。
// 4.如果连线程主线程都没有,怎么执行程序。
// 线程几种分类 1. 用户线程、守护线程
//            2. 主线程 子线程 GC线程
public class T001_CreateWithThread {
    // 交替执行
    public static void main(String[] args) {
        System.out.println("main... 主线程开始...");
        // 1.创建线程
        ThreadDemo01 threadDemo01 = new ThreadDemo01();
        // 2.启动线程
        threadDemo01.start();
        for (int i = 0; i < 10; i++) {
            System.out.println("main---> i:  " + i);
        }
        System.out.println("main... 主线程结束...");
    }
} 

执行结果:

匿名内部类的方式

System.out.println("-----多线程创建开始-----");
new Thread() {
        public void run() {
            for (int i = 0; i < 10; i++) {
                System.out.println("线程 -- " + Thread.currentThread().getName() + "-->" + i);
            }
        };

    }.start();
System.out.println("-----多线程创建结束-----");

2.2 第二种-实现Runnable接口

代码如下:

class ThreadDemo02 implements Runnable {
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(" 子 i:" + i);
        }
    }
}

// 1.实现runable接口,重写run方法
public class T002_CreateWithRunnable {
    public static void main(String[] args) {
        System.out.println("main... 主线程开始...");
    
        // 创建线程
        ThreadDemo02 threadDemo02 = new ThreadDemo02();
        /*
        * 这里 用了Thread的另一个构造方法,
        * 该构造方法可以传入一个Runnable的实现类
        * 而我们查看Thread的源码可以得知,Thread类 原本就实现了Runnable
        * 所里也可以传入一个Thread的对象,这样就可以把一个Thread对象中的run()
        * 方法交由其他的线程进行调用
        */
        Thread t1= new Thread(threadDemo02);
        // 启动线程
        t1.start();
        for (int i = 0; i <10; i++) {
            System.out.println("main..i:"+i);
        }
        System.out.println("main... 主线程结束...");
        
    }
}

匿名内部类的方式

System.out.println("-----多线程创建开始-----");
Thread thread = new Thread(new Runnable() {
public void run() {
    for (int i = 0; i< 10; i++) {
        System.out.println("i:" + i);
    }
}
}).start();
System.out.println("-----多线程创建结束-----");

2.3 第三种-实现Callable接口

/**
 * 
 * Callbale接口 可以又返回值,可以抛出异常,
 * 而Runnable接口 中的run方法没有返回值,异常只能捕获
 * 
 * @author hao
 *
 */
public class T002_CreateWithCallable {
    public static void main(String[] args) throws InterruptedException, ExecutionException {
        MyCallable mc = new MyCallable();
        FutureTask<Integer> ft = new FutureTask<Integer>(mc);
        Thread thread = new Thread(ft);
        thread.start();
        System.out.println(ft.get());
    }
}

class MyCallable implements Callable<Integer> {

    public Integer call() throws Exception {
        
        return 124;
    }
    
}

2.4 常用线程构造函数

  • Thread(),分配一个新的 Thread 对象
  • Thread(String name),分配一个新的 Thread对象,具有指定的name
  • Thread(Runable target),分配一个新的 Thread 对象,将target作为其运行对象
  • Thread(Runable target, String name) 分配一个新的Thread对象,将target作为其运行对象,并指定name

2.5 使用继承Thread类还是使用实现Runnable接口好?

  • 使用实现实现Runnable接口好,原因实现了接口还可以继续继承,继承了类不能再继承。
  • 启动线程是使用调用start方法还是run方法?
  • 开始执行线程 注意 开启线程不是调用run方法,而是start方法
  • 用run是使用实例调用方法。

三、线程基础知识

3.1 常用线程API概述

  • start() --->启动线程
  • Thread.currentThread() ---> 获取当前线程对象
  • getID() --->获取当前线程ID
  • getName() --->获取当前线程名称 ,默认的格式为Thread-编号(该编号从0开始)
  • setDaemon(true) ---> 设置为守护线程
  • isAlive() ---> 判断当前的线程是否处于活动状态,线程处于正在运行或者准备开始运行的状态,就认为线程是存活的
  • Thread.sleep(long mill) ---> 休眠线程
  • Thread.yield() ---> 作用是放弃当前的CPU资源,将它让给其他的任务去占用CPU执行时间,但是放弃的时间不确定,有可能刚刚放弃,马上又获得CPU时间片
  • join() ---> 将执行权交由该线程,当前线程进行进入阻塞状态
  • setPriority((int newPriority) ---> 设置线程的优先级,优先级别为1-10,默认为5,10的级别最高
  • stop() ---> 已经过时,慎用,停止线程, 可能造成 stop 后 会将锁释放, 而且有些清理工作可能会没有完成
  • suspend() 和 resume() --->已经过时 , 暂停和恢复 线程 ,会造成线程的独占问题,还有可能会造成数据不同步的情况

3.2 守护线程

  • Java中有两种线程,一种是用户线程,另一种是守护线程
  • 用户线程是指用户自定义创建的线程,主线程停止,用户线程不会停止
  • 守护线程当进程不存在或主线程停止,守护线程也会被停止。典型的守护线程就是垃圾回收线程,当进程中没有非守护线程了,则垃圾回收线程也就没有存在的必要了,自动销毁。
  • 我们可以使用setDaemon(true)方法设置为守护线程

示例

/*
* 什么是守护线程? 守护线程 进程线程(主线程挂了) 守护线程也会被自动销毁.
* 该示例中我们手动将子线程设置为守护线程,
* 当其他线程(该例中只有主线程)停止时守护线程也会终止
*/
public class DaemonThread {
    public static void main(String[] args) {
        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    try {
                        Thread.sleep(100);
                    } catch (Exception e) {
                        // TODO: handle exception
                    }
                    System.out.println("我是子线程...");
                }
            }
        });
        thread.setDaemon(true);
        thread.start();
        for (int i = 0; i < 10; i++) {
            try {
                Thread.sleep(100);
            } catch (Exception e) {
    
            }
            System.out.println("我是主线程");
        }
        System.out.println("主线程执行完毕!");
    }
    
}

运行结果

3.3 yield方法

  • Thread.yield()方法的作用:暂停当前正在执行的线程,并执行其他线程。(可能没有效果)
  • yield()让当前正在运行的线程回到可运行状态,以允许具有相同优先级的其他线程获得运行的机会。因此,使用yield()的目的是让具有相同优先级的线程之间能够适当的轮换执行。但是,实际中无法保证yield()达到让步的目的,因为,让步的线程可能被线程调度程序再次选中。
  • 结论:大多数情况下,yield()将导致线程从运行状态转到可运行状态,但有可能没有效果。

示例代码

/**
 * yield方法的作用是放弃当前的CPU资源,
 * 将它让给其他的任务去占用CPU执行时间,
 * 但是放弃的时间不确定,有可能刚刚放弃,马上又获得CPU时间片
 * @author hao
 *
 */
public class T009_Yield {
    public static void main(String[] args) {
        YeildTestThread t1 = new YeildTestThread();
        t1.start();
    }
}

class YeildTestThread extends Thread{
    @Override
    public void run() {
        super.run();
        
        long beginTime = System.currentTimeMillis();
        int count =0;
        for(int i =0;i<5000000;i++) {
            //Thread.yield();
            count = count +(i+1);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("用时:"+(endTime-beginTime)+"毫秒!");
        
    }
}

执行结果
注释掉 Thread.yield(); 和没注释掉是的执行时间不同。

3.4 join()方法作用

  • 当在主线程当中执行到t1.join()方法时,就认为主线程应该把执行权让给t1

代码示例


//创建一个线程,子线程执行完毕后,主线程才能执行。
public class T010_Join {
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(new Runnable() {

            public void run() {
                for (int i = 0; i < 5; i++) {
                    System.out.println("子线程,i:" + i);
                }
            }
        });
        t1.start();
        // 当前线程释放资格权,等t1执行完毕之后,才会继续进行执行。
        t1.join();
        for (int i = 0; i < 5; i++) {
            System.out.println("main线程,i:" + i);
        }
    }

}

执行结果

应用场景

有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完后执行代码如下:

public class JoinThreadDemo02 {
    public static void main(String[] args) {
        Thread t1 = new Thread(new Runnable() {
            public void run() {
                for (int i = 0; i < 20; i++) {
                    System.out.println("t1,i:" + i);
                }
            }
        });
        Thread t2 = new Thread(new Runnable() {
            public void run() {
                try {
                    t1.join();
                } catch (Exception e) {
                }
                for (int i = 0; i < 20; i++) {
                    System.out.println("t2,i:" + i);
                }
            }
        });
        Thread t3 = new Thread(new Runnable() {
            public void run() {
                try {
                    t2.join();
                } catch (Exception e) {
                }
                for (int i = 0; i < 20; i++) {
                    System.out.println("t3,i:" + i);
                }
            }
        });
        t1.start();
        t2.start();
        t3.start();
    }
}

3.5 优先级

  • 现代操作系统基本采用时分的形式调度运行的线程,线程分配得到的时间片的多少决定了线程使用处理器资源的多少,也对应了线程优先级这个概念。在JAVA线程中,通过一个int priority来控制优先级,范围为1-10,其中10最高,默认值为5。

public class T011_Priority {
    public static void main(String[] args) {
        PrioritytThread prioritytThread = new PrioritytThread();
        Thread t1 = new Thread(prioritytThread);
        Thread t2 = new Thread(prioritytThread);
        t1.start();
        // 注意设置了优先级, 不代表每次都一定会被执行。 只是CPU调度会有限分配
        t1.setPriority(10);
        t2.start();

    }
}
class PrioritytThread implements Runnable {

    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().toString() + "---i:" + i);
        }
    }
}

四、停止线程

  • 在Java中有3中方法可以终止正在运行的线程:
  • 使用退出标志,是线程正常退出,也就是当run方法完成后线程终止
  • 使用stop方法强行终止线程,不推荐使用此方法,已过时,调用stop方法后会将锁释放, 而且可能使一些清理性的工作得不到完成
  • 使用interrupt方法中断线程

4.1 interrupt方法介绍

调用interrupt()方法后线程并没有马上停止,仅仅是在当前线程中打了一个停止的标记,并不是真正的停止线程。

4.2 判断线程是否是停止状态

  • Thread.interrupted(): 测试当前线程是否已经中断,判断的中断状态由该方法清除。如果连续两次调用该方法,则第二次将返回false
  • this.isInterrupted(): 测试线程Thread对象是否已经是中断状态,但不清除状态标记

源码如下

  • 可以看出上面的两个方法都是调用了本地方法 isInterrupted(),通过传入true和false来决定是否要清除中断状态

public static boolean interrupted() {
    return currentThread().isInterrupted(true);
}

public boolean isInterrupted() {
    return isInterrupted(false);
}

/**
 * Tests if some Thread has been interrupted.  
 * The interrupted state  is reset or not 
 * based on the value of ClearInterrupted that is passed.
 * 
 * 判断某些线程是否已经中断。
 * 根据传入的ClearInterrupted值来决定是否要重置中断的状态
 */
private native boolean isInterrupted(boolean ClearInterrupted);

4.3 利用异常的方式停止线程

/**
 * 利用抛出异常的方式来终止线程
 * @author hao
 *
 */
public class Test_ExceptionInterrupt {
    public static void main(String[] args) {
        try {
            ExcepThread t = new ExcepThread();
            t.start();
            Thread.sleep(2000);
            t.interrupt();
        } catch (InterruptedException e) {
            System.out.println("main catch");
            e.printStackTrace();
        }
        System.out.println("end!");
    }
}

class ExcepThread extends Thread{
    @Override
    public void run() {
        this.stop();
        try {
            for(int i=0;i<500000;i++) {
                if(Thread.interrupted()) {
                    System.out.println("已经是停止状态了,我要退出了!");
//              break;
                    throw new InterruptedException();
                }
                System.out.println("i "+(i+1));
            }
            System.out.println("我被输出了 。线程并未停止! 只是for循环被中断了");
        } catch (InterruptedException e) {
            System.out.println("catch t ");
            e.printStackTrace();
        }
    }
}

五、多线程运行状态

5.1 线程状态概览

  • 线程从创建、运行到结束总是处于下面五个状态之一:新建状态(NEW)、可运行状态(Runnable)、阻塞状态(Blocked)、无限期等待(Waiting)、限期等待(Timed Waiting)、死亡(Terminated) 如下图:

5.2 新建状态(NEW)

  • 当用new操作符创建一个线程时, 例如new Thread(r),线程还没有开始运行,此时线程处在新建状态。当一个线程处于新生状态时,程序还没有开始运行线程中的代码

5.3 可运行状态(Runnbale)

  • 可能正在运行,也可能正在等待 CPU 时间片。包含了操作系统线程状态中的 Ready 和 Running 状态
  • 就绪状态(Ready)
    • 一个新创建的线程并不自动开始运行,要执行线程,必须调用线程的start()方法。当线程对象调用start()方法即启动了线程,start()方法创建线程运行的系统资源,并调度线程运行run()方法。当start()方法返回后,线程就处于就绪状态。
    • 处于就绪状态的线程并不一定立即运行run()方法,线程还必须同其他线程竞争CPU时间,只有获得CPU时间才可以运行线程。因为在单CPU的计算机系统中,不可能同时运行多个线程,一个时刻仅有一个线程处于运行状态。因此此时可能有多个线程处于就绪状态。对多个处于就绪状态的线程是由Java运行时系统的线程调度程序(thread scheduler)来调度的。
  • 运行状态(Running)
    • 当线程获得CPU时间后,它才进入运行状态,真正开始执行run()方法.

5.4 阻塞状态(Blocked)

  • 线程试图得到一个锁,而该锁正被其他线程持有;如果其线程释放了锁就会结束此状态。

5.5 无限期等待(Waiting)

  • 等待其它线程显式地唤醒,否则不会被分配 CPU 时间片。

5.6 限期等待(Timed Waiting)

  • 无需等待其它线程显式地唤醒,在一定时间之后会被系统自动唤醒。

5.7 死亡(Terminated)

  • 有两个原因会导致线程死亡:
  • run方法正常退出而自然死亡,
  • 一个未捕获的异常终止了run方法而使线程猝死。

  • 为了确定线程在当前是否存活着(就是要么是可运行的,要么是被阻塞了),需要使用isAlive方法。如果是可运行或被阻塞,这个方法返回true; 如果线程仍旧是new状态且不是可运行的, 或者线程死亡了,则返回false.

posted @ 2019-10-05 12:40  这个世界~  阅读(440)  评论(0编辑  收藏  举报