Mongodb 和 普通数据库 各种属性 和语句 的对应

 

SQL to MongoDB Mapping Chart

In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.

SQL Terms/ConceptsMongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins embedded documents and linking

primary key

Specify any unique column or column combination as primary key.

primary key

In MongoDB, the primary key is automatically set to the_id field.

aggregation (e.g. group by)

aggregation pipeline

See the SQL to Aggregation Mapping Chart.

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.

 MongoDBMySQLOracleInformixDB2
Database Server mongod mysqld oracle IDS DB2 Server
Database Client mongo mysql sqlplus DB-Access DB2 Client

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume a table named users.

  • The MongoDB examples assume a collection named users that contain documents of the following prototype:

    {
      _id: ObjectId("509a8fb2f3f4948bd2f983a0"),
      user_id: "abc123",
      age: 55,
      status: 'A'
    }
    

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.

SQL Schema StatementsMongoDB Schema Statements
CREATE TABLE users (
    id MEDIUMINT NOT NULL
        AUTO_INCREMENT,
    user_id Varchar(30),
    age Number,
    status char(1),
    PRIMARY KEY (id)
)

Implicitly created on first insert() operation. The primary key _id is automatically added if _id field is not specified.

db.users.insert( {
    user_id: "abc123",
    age: 55,
    status: "A"
 } )

However, you can also explicitly create a collection:

db.createCollection("users")
ALTER TABLE users
ADD join_date DATETIME

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, update() operations can add fields to existing documents using the $set operator.

db.users.update(
    { },
    { $set: { join_date: new Date() } },
    { multi: true }
)
ALTER TABLE users
DROP COLUMN join_date

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, update() operations can remove fields from documents using the $unset operator.

db.users.update(
    { },
    { $unset: { join_date: "" } },
    { multi: true }
)
CREATE INDEX idx_user_id_asc
ON users(user_id)
db.users.createIndex( { user_id: 1 } )
CREATE INDEX
       idx_user_id_asc_age_desc
ON users(user_id, age DESC)
db.users.createIndex( { user_id: 1, age: -1 } )
DROP TABLE users
db.users.drop()

For more information, see db.collection.insert()db.createCollection(),db.collection.update()$set$unsetdb.collection.createIndex()indexes,db.collection.drop(), and Data Modeling Concepts.

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.

SQL INSERT StatementsMongoDB insert() Statements
INSERT INTO users(user_id,
                  age,
                  status)
VALUES ("bcd001",
        45,
        "A")
db.users.insert(
   { user_id: "bcd001", age: 45, status: "A" }
)

For more information, see db.collection.insert().

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.

SQL SELECT StatementsMongoDB find() Statements
SELECT *
FROM users
db.users.find()
SELECT id,
       user_id,
       status
FROM users
db.users.find(
    { },
    { user_id: 1, status: 1 }
)
SELECT user_id, status
FROM users
db.users.find(
    { },
    { user_id: 1, status: 1, _id: 0 }
)
SELECT *
FROM users
WHERE status = "A"
db.users.find(
    { status: "A" }
)
SELECT user_id, status
FROM users
WHERE status = "A"
db.users.find(
    { status: "A" },
    { user_id: 1, status: 1, _id: 0 }
)
SELECT *
FROM users
WHERE status != "A"
db.users.find(
    { status: { $ne: "A" } }
)
SELECT *
FROM users
WHERE status = "A"
AND age = 50
db.users.find(
    { status: "A",
      age: 50 }
)
SELECT *
FROM users
WHERE status = "A"
OR age = 50
db.users.find(
    { $or: [ { status: "A" } ,
             { age: 50 } ] }
)
SELECT *
FROM users
WHERE age > 25
db.users.find(
    { age: { $gt: 25 } }
)
SELECT *
FROM users
WHERE age < 25
db.users.find(
   { age: { $lt: 25 } }
)
SELECT *
FROM users
WHERE age > 25
AND   age <= 50
db.users.find(
   { age: { $gt: 25, $lte: 50 } }
)
SELECT *
FROM users
WHERE user_id like "%bc%"
db.users.find( { user_id: /bc/ } )
SELECT *
FROM users
WHERE user_id like "bc%"
db.users.find( { user_id: /^bc/ } )
SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id ASC
db.users.find( { status: "A" } ).sort( { user_id: 1 } )
SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id DESC
db.users.find( { status: "A" } ).sort( { user_id: -1 } )
SELECT COUNT(*)
FROM users
db.users.count()

or

db.users.find().count()
SELECT COUNT(user_id)
FROM users
db.users.count( { user_id: { $exists: true } } )

or

db.users.find( { user_id: { $exists: true } } ).count()
SELECT COUNT(*)
FROM users
WHERE age > 30
db.users.count( { age: { $gt: 30 } } )

or

db.users.find( { age: { $gt: 30 } } ).count()
SELECT DISTINCT(status)
FROM users
db.users.distinct( "status" )
SELECT *
FROM users
LIMIT 1
db.users.findOne()

or

db.users.find().limit(1)
SELECT *
FROM users
LIMIT 5
SKIP 10
db.users.find().limit(5).skip(10)
EXPLAIN SELECT *
FROM users
WHERE status = "A"
db.users.find( { status: "A" } ).explain()

For more information, see db.collection.find()db.collection.distinct(),db.collection.findOne()$ne $and$or$gt$lt$exists$lte$regexlimit(),skip()explain()sort(), and count().

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.

SQL Update StatementsMongoDB update() Statements
UPDATE users
SET status = "C"
WHERE age > 25
db.users.update(
   { age: { $gt: 25 } },
   { $set: { status: "C" } },
   { multi: true }
)
UPDATE users
SET age = age + 3
WHERE status = "A"
db.users.update(
   { status: "A" } ,
   { $inc: { age: 3 } },
   { multi: true }
)

For more information, see db.collection.update()$set$inc, and $gt.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.

SQL Delete StatementsMongoDB remove() Statements
DELETE FROM users
WHERE status = "D"
db.users.remove( { status: "D" } )
DELETE FROM users
db.users.remove({})

For more information, see db.collection.remove().

 

 

 

SQL to Aggregation Mapping Chart

The aggregation pipeline allows MongoDB to provide native aggregation capabilities that corresponds to many common data aggregation operations in SQL.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corresponding MongoDB aggregation operators:

SQL Terms, Functions, and ConceptsMongoDB Aggregation Operators
WHERE $match
GROUP BY $group
HAVING $match
SELECT $project
ORDER BY $sort
LIMIT $limit
SUM() $sum
COUNT() $sum
join No direct corresponding operator; however, the$unwind operator allows for somewhat similar functionality, but with fields embedded within the document.

Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume two tables, orders and order_lineitem that join by theorder_lineitem.order_id and the orders.id columns.

  • The MongoDB examples assume one collection orders that contain documents of the following prototype:

    {
      cust_id: "abc123",
      ord_date: ISODate("2012-11-02T17:04:11.102Z"),
      status: 'A',
      price: 50,
      items: [ { sku: "xxx", qty: 25, price: 1 },
               { sku: "yyy", qty: 25, price: 1 } ]
    }
    
SQL ExampleMongoDB ExampleDescription
SELECT COUNT(*) AS count
FROM orders
db.orders.aggregate( [
   {
     $group: {
        _id: null,
        count: { $sum: 1 }
     }
   }
] )
Count all records fromorders
SELECT SUM(price) AS total
FROM orders
db.orders.aggregate( [
   {
     $group: {
        _id: null,
        total: { $sum: "$price" }
     }
   }
] )
Sum theprice field from orders
SELECT cust_id,
       SUM(price) AS total
FROM orders
GROUP BY cust_id
db.orders.aggregate( [
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   }
] )
For each uniquecust_id, sum theprice field.
SELECT cust_id,
       SUM(price) AS total
FROM orders
GROUP BY cust_id
ORDER BY total
db.orders.aggregate( [
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   },
   { $sort: { total: 1 } }
] )
For each uniquecust_id, sum theprice field, results sorted by sum.
SELECT cust_id,
       ord_date,
       SUM(price) AS total
FROM orders
GROUP BY cust_id,
         ord_date
db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        },
        total: { $sum: "$price" }
     }
   }
] )
For each uniquecust_id,ord_dategrouping, sum the pricefield. Excludes the time portion of the date.
SELECT cust_id,
       count(*)
FROM orders
GROUP BY cust_id
HAVING count(*) > 1
db.orders.aggregate( [
   {
     $group: {
        _id: "$cust_id",
        count: { $sum: 1 }
     }
   },
   { $match: { count: { $gt: 1 } } }
] )
For cust_idwith multiple records, return thecust_id and the corresponding record count.
SELECT cust_id,
       ord_date,
       SUM(price) AS total
FROM orders
GROUP BY cust_id,
         ord_date
HAVING total > 250
db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        },
        total: { $sum: "$price" }
     }
   },
   { $match: { total: { $gt: 250 } } }
] )
For each uniquecust_id,ord_dategrouping, sum the pricefield and return only where the sum is greater than 250. Excludes the time portion of the date.
SELECT cust_id,
       SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
db.orders.aggregate( [
   { $match: { status: 'A' } },
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   }
] )
For each uniquecust_id with status A, sum the pricefield.
SELECT cust_id,
       SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
   { $match: { status: 'A' } },
   {
     $group: {
        _id: "$cust_id",
        total: { $sum: "$price" }
     }
   },
   { $match: { total: { $gt: 250 } } }
] )
For each uniquecust_id with status A, sum the pricefield and return only where the sum is greater than 250.
SELECT cust_id,
       SUM(li.qty) as qty
FROM orders o,
     order_lineitem li
WHERE li.order_id = o.id
GROUP BY cust_id
db.orders.aggregate( [
   { $unwind: "$items" },
   {
     $group: {
        _id: "$cust_id",
        qty: { $sum: "$items.qty" }
     }
   }
] )
For each uniquecust_id, sum the corresponding line item qtyfields associated with the orders.
SELECT COUNT(*)
FROM (SELECT cust_id,
             ord_date
      FROM orders
      GROUP BY cust_id,
               ord_date)
      as DerivedTable
db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        }
     }
   },
   {
     $group: {
        _id: null,
        count: { $sum: 1 }
     }
   }
] )
posted @ 2015-04-03 15:52  iDEAAM  阅读(494)  评论(0编辑  收藏  举报