摘要:
金融市场中的波动性建模是金融计量经济学的重要研究内容。时间序列数据,尤其是金融市场数据,往往表现出强烈的波动聚集现象,这意味着波动率在某些时期较高,而在其他时期较低,波动性具有异方差性(heteroskedasticity)。为了有效描述这种现象,Engle(1982年)提出了ARCH(自回归条件异 阅读全文
摘要:
滞后变量模型(Lagged Variable Models)是一种时间序列分析方法,主要通过引入自变量和因变量的滞后项来解释当前变量的行为。该模型在经济学、金融学中广泛应用,尤其在预测和政策评估时。滞后变量反映了过去事件对当前变量的持续影响,揭示变量间的动态关系。它包括自回归模型、分布滞后模型及自回 阅读全文
摘要:
时间序列分析(ARIMA)模型是一种广泛用于预测和分析随时间变化的数据模型。ARIMA模型由自回归(AutoRegressive,AR)、差分(Integrated,I)和移动平均(Moving Average,MA)三部分构成。它通过对过去数据的自回归和移动平均来预测未来数据点,广泛应用于经济学、 阅读全文
摘要:
序列相关性(Serial Correlation)是指在时间序列或截面数据的回归模型中,误差项之间存在相关性。这种现象意味着当前误差项的值会受到前期误差项的影响,误差项之间并不是独立的。这与经典线性回归模型假设的误差项是独立同分布的(i.i.d.)违背了高斯-马尔可夫定理(Gauss-Markov 阅读全文
摘要:
Probit和Logit回归模型都是处理二分类(binary classification)问题的经典模型,它们主要用于研究自变量对二元因变量(如“成功”或“失败”、“是”或“否”)的影响。二分类问题中的因变量𝑌通常取值为0或1,而自变量X则可以是连续的、离散的或二者的混合。在经典的线性回归模型中 阅读全文
摘要:
多元线性回归(Multiple Linear Regression, MLR)是一种统计模型,被广泛认为是计量经济学的核心基础。多元线性回归为经济研究者提供了一种有效的方法来建模和分析多个自变量与因变量之间的线性关系。 在计量经济学中,研究者常常面临复杂的经济现象,这些现象往往受多种因素影响。通过建 阅读全文
摘要:
在计量经济学和时间序列分析中,Ping稳性是建模和预测的重要前提条件。Ping稳时间序列能够帮助分析师和研究人员更好地理解和预测数据的行为。研究时间序列是依据已知的历史数据,来预测未来的趋势、季节性和变化情况。时间序列数据与一般数据的最大区别在于数据点之间存在时间的依赖关系,时间是数据的重要自变量。 阅读全文
摘要:
因果推断(Causal Inference)是统计学和数据科学中的重要分支,用于理解事件之间的因果关系,而不仅仅是相关性。与相关性分析不同,因果推断追求揭示因变量(结果)如何受到自变量(原因)的直接或间接影响。特别是,因果推断为科学研究、政策制定和商业决策提供了至关重要的工具。随着数据科学的快速发展 阅读全文
摘要:
相关分析是用于研究多个变量之间相互关系的统计方法,最早由英国统计学家卡尔·皮尔逊(Karl Pearson)于1896年提出。皮尔逊通过对变量间线性关系的深入研究,提出了“皮尔逊相关系数”(Pearson Correlation Coefficient),标志着相关分析方法的诞生。随着统计学的发展, 阅读全文
摘要:
在博弈论中,纳什均衡(Nash Equilibrium)是博弈各方的一种策略组合,在这个组合下,每个参与者的策略都是对其他参与者策略的最优反应。换句话说,在纳什均衡下,任何一方都没有动机单方面改变自己的策略,因为那样做不会带来更高的收益。然而,纳什均衡的稳定性问题引发了大量的研究,特别是当我们考虑到 阅读全文