摘要:
罚函数法又称乘子法,是将约束优化问题转换为无约束最优化问题的方法之一。其基本思想就是通过在原始的目标函数中添加一个障碍函数(也可以理解成惩罚函数)来代替约束条件中的不等式约束。如果当前解不满足约束条件,就在目标项上加上一个正向的惩罚(这里考虑的都是最小化问题),强迫当前解往可行域的方向走。至于正向惩 阅读全文
摘要:
库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最重要的理论成果之一,是确定某点为极值点的必要条件。如果所讨论的规划是凸规划,那么库恩-塔克条件也是充分条件。本文不对数学公式进行详细推导,而是从直观上对KT条件进行理解。 一、带有不等式约束的模型 \[ \min f(X 阅读全文
摘要:
对非线性规划来说,大多数情况下我们是不可能无限制求其理想情况下的最优值的,总是存在一些约束生成了一部分可行解域。从机器学习上来说,我们的可行解域就被限制住了,直接求解起来事实上是有一定困难的,我们更希望求解的是无约束的优化问题,就衍生出拉格朗日乘子法。拉格朗日乘子法主要用于解决约束优化问题,它的基本 阅读全文