08 2024 档案
摘要:线性规划对偶理论的提出源于1940年代美国数学家冯·诺依曼的工作,他首次引入了对偶的概念。1947年,乔治·丹茨格(George Dantzig)进一步完善了线性规划及其对偶理论,并提出了著名的单纯形法。对偶理论的基础在于每一个线性规划问题(原问题)都可以关联一个对偶问题,这两个问题的最优解之间存在
阅读全文
摘要:单纯形法(Simplex Method)是解决线性规划问题的一种高效且广泛使用的算法。由乔治·丹齐克(George Dantzig)在20世纪40年代提出,这一方法通过系统地检查可行解空间的极点,从而找到最优解。由于其计算效率高,单纯形法迅速成为线性规划问题中最重要和最常用的算法之一。它的应用范围广
阅读全文
摘要:线性规划(Linear Programming, LP)是优化理论中用于在给定约束条件下最大化或最小化线性目标函数的一种数学方法。线性规划的最优解总是出现在可行域的顶点上,这是因为目标函数在可行域内的变化是线性的,因此在顶点处函数的值可能达到极值(最大或最小)。求解线性规划问题的常用方法之一是单纯形
阅读全文
摘要:线性规划的标准型及其转化过程是理解和求解线性规划问题的基础。通过引入松弛变量、剩余变量和将自由变量转化为两个非负变量,可以将任意形式的线性规划问题转化为标准型。标准型的线性规划问题便于使用单纯形法等算法进行求解,从而找到最优解。了解这些概念和技巧,对于深入掌握线性规划理论和实践应用都非常重要。 一、
阅读全文